22 resultados para Análise de clustering espaciotemporal
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Os solos submetidos aos sistemas de produção sem preparo estão sujeitos à compactação, provocada pelo tráfego de máquinas, tornando necessário o acompanhamento das alterações do ambiente físico, que, quando desfavorável, restringe o crescimento radicular, podendo reduzir a produtividade das culturas. O objetivo do trabalho foi avaliar o efeito de diferentes intensidades de compactação na qualidade física de um Latossolo Vermelho textura média, localizado em Jaboticabal (SP), sob cultivo de milho, usando métodos de estatística multivariada. O delineamento experimental foi inteiramente casualizado, com seis intensidades de compactação e quatro repetições. Foram coletadas amostras indeformadas do solo nas camadas de 0,02-0,05, 0,08-0,11 e 0,15-0,18 m para determinação da densidade do solo (Ds), na camada de 0-0,20 m. As características da cultura avaliadas foram: densidade radicular, diâmetro radicular, matéria seca das raízes, altura das plantas, altura de inserção da primeira espiga, diâmetro do colmo e matéria seca das plantas. As análises de agrupamentos e componentes principais permitiram identificar três grupos de alta, média e baixa produtividade de plantas de milho, segundo variáveis do solo, do sistema radicular e da parte aérea das plantas. A classificação dos acessos em grupos foi feita por três métodos: método de agrupamentos hierárquico, método não-hierárquico k-means e análise de componentes principais. Os componentes principais evidenciaram que elevadas produtividades de milho estão correlacionadas com o bom crescimento da parte aérea das plantas, em condições de menor densidade do solo, proporcionando elevada produção de matéria seca das raízes, contudo, de pequeno diâmetro. A qualidade física do Latossolo Vermelho para o cultivo do milho foi assegurada até à densidade do solo de 1,38 Mg m-3.
Resumo:
A erodibilidade é um fator de extrema importância na caracterização da perda de solo, representando os processos que regulam a infiltração de água e sua resistência à desagregação e o transporte de partículas. Assim, por meio da análise de dependência espacial dos componentes principais da erodibilidade (fator K), objetivou-se estimar a erodibilidade do solo em uma área de nascentes da microbacia do Córrego do Tijuco, Monte Alto-SP, e analisar a variabilidade espacial das variáveis granulométricas do solo ao longo do relevo. A erodibilidade média da área foi considerada alta, e a análise de agrupamento k-means apontou para uma formação de cinco grupos: no primeiro, os altos teores de areia grossa (AG) e média (AM) condicionaram sua distribuição nas áreas planas; o segundo, caracterizado pelo alto teor de areia fina (AF), distribui-se nos declives mais convexos; o terceiro, com altos teores de silte e areia muito fina (AMF), concentrou-se nos maiores declives e concavidades; o quarto, com maior teor de argila, seguiu as zonas de escoamento de água; e o quinto, com alto teor de matéria orgânica (MO) e areia grossa (AG), distribui-se nas proximidades da zona urbana. A análise de componentes principais (ACP) mostrou quatro componentes com 87,4 % das informações, sendo o primeiro componente principal (CP1) discriminado pelo transporte seletivo de partículas principalmente em zonas pontuais de maior declividade e acúmulo de sedimentos; o segundo (CP2), discriminado pela baixa coesão entre as partículas, mostra acúmulo da areia fina nas áreas de menor cota em toda a área de concentração de água; o terceiro (CP3), discriminado pela maior agregação do solo, concentra-se principalmente nas bases de grandes declives; e o quarto (CP4), discriminado pela areia muito fina, distribui-se ao longo das declividades nas maiores altitudes. Os resultados sugerem o comportamento granulométrico do solo, que se mostra suscetível ao processo erosivo devido às condições texturais superficiais e à movimentação do relevo.
Resumo:
As espécies Commelina benghalensis, C. villosa, C. diffusa e C. erecta são conhecidas como trapoeraba e, freqüentemente, são confundidas entre si, dificultando o controle químico, o que pode provocar prejuízos econômicos e danos ambientais. O presente trabalho teve como objetivo selecionar características morfológicas que possibilitem facilitar a identificação dessas espécies, utilizando a técnica de análise multivariada. Foram avaliadas 12 características morfológicas descritivas e 13 quantitativas, utilizando-se os métodos de análise de agrupamento e análise de componentes principais. As espécies apresentaram alto grau de dissimilaridade, sobretudo em relação às características descritivas, destacando-se: hábito da planta, pilosidade do caule e da folha, entre outros. As características quantitativas também mostraram poder discriminatório. Características que apresentaram alto valor taxonômico foram selecionadas para compor a chave de identificação para as quatro espécies de Commelina.
Resumo:
The objective of this work was to verify the application of cluster analysis to evaluate soil erosion risk for different soil classes, soil slopes and soil managements. The study was conducted in a 33 ha section of a large field located in Carmo do Rio Claro County, MG, Brazil. The field had been managed in a corn/bean rotation under conventional tillage and under coffee plantation for seven years, both under sprinkle irrigation. Soil samples were obtained at every 10 m at 0.20 m depth along a transect of 1050 m. Soil erosion risk (A), natural potential erosion (PN), and erosion expectation (EE) were determined and submitted to a cluster and principal component analysis. The application of clustering analysis showed high correlation between the clusters and soil types. With clustering analysis plus principal components analysis, it was possible to identify groups of high and low soil erosion expectation, showing that the areas with higher soil erosion expectation are correlated to the soil class, soil slope and soil management. Among the studied variables, the natural potential erosion (PN) showed to be the most important factor to identify different soil erosion groups. The cluster analysis showed that 98% of the variables were classified within each group, and that they should be managed differently due to the soil erosive potential of each group,.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Biological processes are complex and possess emergent properties that can not be explained or predict by reductionism methods. To overcome the limitations of reductionism, researchers have been used a group of methods known as systems biology, a new interdisciplinary eld of study aiming to understand the non-linear interactions among components embedded in biological processes. These interactions can be represented by a mathematical object called graph or network, where the elements are represented by nodes and the interactions by edges that link pair of nodes. The networks can be classi- ed according to their topologies: if node degrees follow a Poisson distribution in a given network, i.e. most nodes have approximately the same number of links, this is a random network; if node degrees follow a power-law distribution in a given network, i.e. small number of high-degree nodes and high number of low-degree nodes, this is a scale-free network. Moreover, networks can be classi ed as hierarchical or non-hierarchical. In this study, we analised Escherichia coli and Saccharomyces cerevisiae integrated molecular networks, which have protein-protein interaction, metabolic and transcriptional regulation interactions. By using computational methods, such as MathematicaR , and data collected from public databases, we calculated four topological parameters: the degree distribution P(k), the clustering coe cient C(k), the closeness centrality CC(k) and the betweenness centrality CB(k). P(k) is a function that calculates the total number of nodes with k degree connection and is used to classify the network as random or scale-free. C(k) shows if a network is hierarchical, i.e. if the clusterization coe cient depends on node degree. CC(k) is an indicator of how much a node it is in the lesse way among others some nodes of the network and the CB(k) is a pointer of how a particular node is among several ...(Complete abstract click electronic access below)
Resumo:
The soybean crop is considered a high expression around the world. In plant breeding programs, knowledge of genetic diversity is extremely important and in this context, are frequently used multivariate analyzes. Thus, the aim of the present study was to evaluate the genetic divergence between soybean crosses through multivariate techniques. In total, 16 crosses were evaluated, which were in the F2 generation of inbreeding. The evaluated characteristics were plant height at maturity, height of the first pod, number of branches per plant, number of pods per plant, number of nodes per plant, hundred seed weight, grain yield and oil content. For the analyzes was used Euclidean distance, methods of hierarchical clustering UPGMA and Ward and principal component analysis. Genetic distances estimated using Euclidean distance ranged from 1.24 to 8.13, with the smallest distance observed between crosses C1 and C4, and the greatest distance between the C2 crosses and C6. The methods UPGMA clustering and Ward met crossings in five different groups. The principal component analysis explained 86.2% of the variance contained in the original eight variables with three main components. The APM characters, NV, NR, NN, PG% and oil were the main contributors to genetic divergence among traits. Multivariate techniques were crucial to the analysis of genetic diversity, and the methods of Ward and UPGMA clustering and principal components have consistent results in this way, the simultaneous use of these tools in genetic analysis of crosses is indicated