29 resultados para Alumina particles

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Morphology of three samples of alumina are investigated. Infrared spectra are analysed by use of their morphology through the theory of average dielectric constant. Crystal shape is obtained from X-ray diffraction patterns by reflection intensity ratio. In the case of electron scanning microscopy, shape factor was obtained by an average axial ratio of the particles. Comparison of results show that there is agreement among these techniques and infrared spectra can be used to determine the morphology of alumina particles from 2.7 to 10 mu m, even for heterogeneous samples. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In experimental conditions, cutting forces were studied during turning of green alumina billets, including their correlation with surface aspects of the workpiece. The correlation between cutting power and the removal rate are important parameters for defining the design of ceramic products, since inadequate parameters can produce excessive surface damage to the workpiece. This study examined the forces obtained during turning of alumina workpieces with 99.8% purity in their green state, by means of a three-point dynamometer, evaluating the cutting, feed and depth forces, using a cermet tool under constant machining conditions. Variables were compared with the forces, including surface finish, tool wear and temperature during machining. In the study, it was found that the depth of cut had no significant effect on the surface quality, and the cutting speed and feed influencing the finish. However, preliminary tests for selecting the cutting conditions showed that unsuitables cutting speeds and feeds generate severe damage to the workpiece surface. The best condition was 1.00 mm depth of cut, and the forces increasedfor with each pass performed, with the feed force the variable with greatest increases in relation to the cutting and depth forces, and wear of the cutting tool directly influenced the surface finish, generated by the highly abrasive nature of the alumina particles of the green compact. It is emphasized that the alumina in its green state showed high abrasive effect on the cutting tool during the turning process and the surface finishing of the green workpiece had a direct influence on the sintered workpiece.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study was designed to analyse the average depth of the microporosity of a nickel-chromium (Ni-Cr) system alloy (Verabond II). The metal surface was subject to one of the following surface treatment: (i) Electrolytic etching in nitric acid 0.5 N at a current density of 250 mA cm(-2) ; (ii) chemical etching with CG-Etch etchant; and (iii) Sandblasting with alumina particles 50 mum. Half of the samples were polished before the surface treatments. The depth of porosity was measured through photomicrographs (500x) with a profilometer, and the data were statistically analysed using an analysis of variance (anova) followed by Tukey's test. The conclusions were (i) Differents surface treatment of the Ni-Cr system alloy lead to different depths of microporosity; (ii) the greatest depth of porosity was observed in non-polished alloy; (iii) the greatest and identical depth of microporosity was observed following electrolytic etching and chemical etching; (iv) the least and identical depth of microporosity was observed with chemical etching and sandblasting with alumina particles 50 mum, and (v) Chemical etching showed an intermediary depth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Boehmite (gamma-AlOOH) synthesis have been investigated using a spray pyrolysis (SP) device starting from a stable sol of Al-tri-sec-butoxide peptized by nitric acid. Free spherical particles from 100 to 500 nm have been elaborated. Particles sub-structure is made of nano-crystalline boehmite with very small average crystallite size (one crystal cell along the b axis). The nano-crystalline boehmite synthesized by SP at low temperature (200 degrees C) is spontaneously dispersible in water without any surface treatment. Boehmite powder may be transformed to transition gamma-alumina by heat post-treatment. Powders of sub-micrometric and spherical gamma-alumina particles may also be synthesized by SP at 700 degrees C. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências Odontológicas - FOAR

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Odontologia Restauradora - ICT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compared the effect of physicochemical surface conditioning methods on the adhesion of bis-GMA-based resin cement to particulate filler composite (PFC) used for indirect dental restorations. PFC blocks (N (block)=54, n (block)=9 per group) were polymerized and randomly subjected to one of the following surface conditioning methods: a) No conditioning (Control-C), b) Hydrofluoric acid (HF)etching for 60s (AE60), c) HF for 90s (AE90), d) HF for 120s (AE120), e) HF for 180s (AE180), and f) air-abrasion with 30 mu m silica-coated alumina particles (AB). The conditioned surfaces were silanized with an MPS silane, and an adhesive resin was applied. Resin composite blocks were bonded to PFC using resin cement and photo-polymerized. PFC-cement-resin composite blocks were cut under coolant water to obtain bar specimens (1mmx0.8mm). Microtensile bond strength test (mu TBS)was performed in a universal testing machine (1mm/min). After debonding, failure modes were classified using stereomicroscopy. Surface characterization was performed on a set of separate specimen surfaces using Scanning Electron Microscopy (SEM), X-Ray Dispersive Spectroscopy (XDS), X-Ray Photoelectron Spectroscopy (XPS), and Fourier Transform-Raman Spectroscopy (FT-RS). Mean mu TBS (MPa) of C (35.6 +/- 4.9) was significantly lower than those of other groups (40.2 +/- 5.6-47.4 +/- 6.1) (p<0.05). The highest mu TBS was obtained in Group AB (47.4 +/- 6.1). Prolonged duration of HF etching increased the results (AE180: 41.9 +/- 7), but was not significantly different than that of AB (p>0.05). Failure types were predominantly cohesive in PFC (34 out of 54) followed by cohesive failure in the cement (16 out of 54). Degree of conversion (DC) of the PFC was 63 +/- 10%. SEM analysis showed increased irregularities on PFC surfaces with the increased etching time. Chemical surface analyses with XPS and FT-RS indicated 11-70% silane on the PFC surfaces that contributed to improved bond strength compared to Group C that presented 5% silane, which seemed to be a threshold. Group AB displayed 83% SiO2 and 17% silane on the surfaces.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of zirconia surface treatments on low-temperature degradation (LTD). Disc-shaped specimens were subjected to one of four surface treatments, denoted as C (controlno surface treatment), Si (air abrasion with 30 mu m silica-modified alumina particles), Al (air abrasion with 30 mu m alumina particles), and Gr (grinding with 120 grit diamond discs). Half of the samples were submitted to autoclave treatment for 12 h (127 degrees C, 1.5 bar). Samples were characterized by x-ray diffraction and profilometer analysis and were subjected to biaxial flexural strength test. All of the groups exhibited an increase in the amount of monoclinic phase (m-phase) after LTD. The tm transformation was remarkable for the specimens from the C group, which also exhibited a significant increase in strength. The Gr group also exhibited an increase in strength but lower initial roughness, which probably suppressed LTD on the zirconia surface. The specimens subjected to air abrasion exhibited higher initial amounts of m-phase and a small increase in m-phase after LTD; the strength was not affected in these groups. The effects of LTD were different with each surface treatment applied. Apparently, LTD may be suppressed by smoother surfaces or the presence of an initial amount of m-phase on zirconia surface. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 101B: 1387-1392, 2013.