20 resultados para Alloy steel

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique.In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors.Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently.The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology).The self-consistent analysis provided reliable chemical information about the film, despite its heavy substrate.As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities.© 2013 Elsevier B.V.All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work measured the effect of milling parameters on the surface integrity of low-carbon alloy steel. The Variance Analysis showed that only depth of cut did not influence on the workpiece roughness and the Pearson's Coefficient indicated that cutting speed was more influent than tool feed. All cutting parameters introduced tensile residual stress in workpiece surface. The chip formation mechanism depended specially on cutting speed and influenced on the roughness and residual stress of workpiece.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma immersion ion implantation (PIII) process is a three dimensional surface modification method that is quite mature and well known to the surface engineering community nowadays, especially to those working in the field of plasma-materials interaction, aiming at both industrial and academic applications. More recently, deposition methods have been added to PIII, the PIII&D, opening possibilities of broader range of applications of these techniques. So, PIII&D is becoming a routine method of surface modification, with the advantage of pushing up the retained dose levels limited by the sputtering due to ion implantation. Therefore, well adherent, thick, three-dimensional films without stress are possible to be achieved, at relatively low cost, using PIII&D. In this paper, we will discuss about a few PIII and PIII&D experiments that have been performed recently to achieve surface improvements in different materials: 1 - high temperature nitrogen PIII in Ti6Al4V alloy in which a deep nitrogen rich treated layer resulted in surface improvements as increase of hardness, corrosion resistance and resistance to wear of the Ti alloy; 2 - nanostructures in ZnO films, obtained by PIII&D of vaporized & ionized Zn source; 3 - combined implantation and deposition of calcium for biomaterial activity of Ti alloy (PIII&D), allowing the growth of hydroxyapatite in a body solution; 4 - magnetron sputtering deposition of Cr that was enhanced by the glow discharge Ar plasma to allow implantation and deposition of Cr on SAE 1070 steel (PIII&D) resulting in surfaces with high resistance to corrosion; and 5 - implantation of nitrogen by ordinary PIII into this Cr film, which improved resistance to corrosion, while keeping the tribological properties as good as for the SAE 1070 steel surface. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance have resulted in the search for possible alternatives. Zinc-nickel (Zn-Ni) alloys have received considerable interest recently, because these coatings show advantages such as a good resistance to white and red rust, high plating rates, and acceptance in the market. In this study, the effect of electroplated Zn-Ni coatings on AISI 4340 high-strength steel was analyzed for rotating bending fatigue strength, corrosion, and adhesion resistance. The compressive residual stress field was measured by x-ray diffraction prior to fatigue tests. Optical microscopy documented coating thickness, adhesion characteristics, and coverage extent for nearly all substrates. Fractured fatigue specimens were investigated using scanning electron microscopy (SEM). Three different Zn-Ni coating thicknesses were tested, and comparisons with the rotating bending fatigue data from electroplated Cd specimens were performed. Experimental results differentiated the effects of the various coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the influence of coating thickness on the fatigue strength.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: The purpose of this study was to use photoelastic analysis to compare the system of forces generated by retraction T-loop springs made with stainless steel and titanium-molybdenum alloy (TMA) (Ormco, Glendora, Calif) with photoelastic analysis. Methods: Three photoelastic models were used to evaluate retraction T-loop springs with the same preactivations in 2 groups. In group 1, the loop was constructed with a stainless steel wire, and 2 helicoids were incorporated on top of the T-loop; in group 2, it was made with TMA and no helicoids. Results: Upon using the qualitative analysis of the fringe order in the photoelastic model, it was observed that the magnitude of force generated by the springs in group 1 was significantly higher than that in group 2. However, both had symmetry for the active and reactive units related to the system of force. Conclusions: Both springs had the same mechanical characteristics. TMA springs showed lower force levels. (Am J Orthod Dentofacial Orthop 2011;140:e123-e128)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well known that fatigue behaviour is an important parameter to be considered in mechanical components subjected to constant and variable amplitude loadings. In combination with corrosion phenomenon, fatigue effects were responsible for proximally 64% of fails that occur in metallic parts of aeronautical accidents in the last 30 years. Recovered substrates have been extensively used in the aerospace field. Cadmium electroplating has been widely applied to promote protective coatings in aeronautical components, resulting in excellent corrosion protection combined with a good performance in cyclic loading. Ecological considerations allied to the increasing demands for corrosion resistance, resulted in the search for possible alternatives. Zinc-nickel alloys received considerable interest recently, since these coatings showed some advantages such as a good resistance to white and red rust, high plating rates and acceptation in the market. In this study the effects of zinc-nickel coatings electroplated on AISI 4340 high strength steel were analysed on rotating bending and axial fatigue strength, corrosion and adhesion resistance. Compressive residual stress field was measured by a X-ray tensometry prior to fatigue tests. Optical microscopy images showed coating thicknesses, adhesion and the existence of an uniform coverage of nearly all substrates. The fractured fatigue specimens were investigated using a scanning electron microscope. Three different zinc-nickel coating thicknesses were tested and comparison with rotating bending fatigue data from specimens cadmium electroplated and heat treated at 190°C for 3, 8 and 24 hours to avoid the diffusion of hydrogen in the substrate, was performed. Experimental results showed effect of coatings on the AISI 4340 steel behaviour when submitted to fatigue testing and the existence of coating thickness influence on the fatigue strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)