68 resultados para Alligator snapping turtle
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The purpose of this study was to evaluate the accuracy of hand-held refractometer in determining plasma protein concentrations in South American snake-necked turtle (Hydromedusa tectifera) as compared with the standard biuret method. The results indicated that plasma protein values may be accurately determined in snake- necked turtle with a hand-held refractometer.
Resumo:
Eosinophils and neutrophils are granulocytic leukocytes that are present in the blood of most vertebrates. Studies have been performed on lower vertebrates to understand the biological roles of the cells in defense mechanisms and to establish phylogenetic studies and new experimental models. Whether these 2 cell types exist in reptiles is a matter of controversy. In the blood of turtles there are 2 types of granulocytes that exhibit eosinophilia, one of them with round cytoplasmic granules and the other with elongated cytoplasmic granules. It has been suggested that these cells may be eosinophils in different stages of maturation but they also may be distinct cell types, i.e. eosinophils and neutrophils. In the present study, we characterized the 2 types of granulocytes that are present in the blood of Chrysemys dorbignih, using cytochemical techniques. Type I eosinophils showed activity of nonspecific esterase, peroxidase activity that is resistant to KCN, and basic proteins. Type II eosinophils exhibited activity of trimetaphosphatase, alkaline phosphatase, nonspecific esterase, peroxidase that is sensitive to KCN, and basic proteins. These observations indicate the existence of 2 distinct cell types in the blood of Chrysemys dorbignih, type I and type II eosinophils, that correspond to eosinophils and heterophils (neutrophils) of mammals and other vertebrates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Information on endoparasites infecting Neotropical turtles is scarce. The present paper reports the occurrence of endoparasites in three adult individuals of Vanderhaege's Toad-Headed Turtle (Mesoclemmys vanderhaegei). The records include an undescribed nematode species in the genus Spiroxys, not previously reported for the family Chelidae, and the first South American record of a monogenetic trematode of the genus Neopolystoma.
Resumo:
Red blood cells (RBCs) from most vertebrates restore volume upon hypertonic shrinkage and the mechanisms underlying this regulatory volume increase (RVI) have been studied extensively in these cells. Despite the phylogenetically interesting position of reptiles, very little is known about their red cell function. The present study demonstrates that oxygenated RBCs in all major groups of reptiles exhibit no or a very reduced RVI upon -25% calculated hyperosmotic shrinkage. Thus, RBCs from the snakes Crotalus durissus and Python regius, the turtle Trachemys scripta and the alligator Alligator mississippiensis showed no statistically significant RVI within 120 min after shrinkage, while the lizard Tupinambis merianae showed 22% volume recovery after 120 min. Amiloride (10(-4) M) and bumetanide (10(-5) M) had no effect on the RVI in T merianae, indicating no involvement of the Na(+)/H(+) exchanger (NHE) or the Na(+)/K(+)/2Cl(-) co-transporter (NKCC) or insentive transporters. Deoxygenation of RBCs from A. mississippiensis and T merianae did not significantly affect RVI upon shrinkage. Deoxygenation per se of red blood cells from T merianae elicited a slow volume increase, but the mechanism was not characterized. It seems, therefore, that the RVI response based on NHE activation was lost among the early sauropsids that gave rise to modern reptiles and birds, while it was retained in mammals. An RVI response has then reappeared in birds, but based on activation of the NKCC. Alternatively, the absence of the RVI response may represent the most ancient condition, and could have evolved several times within vertebrates. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Blood from eight specimens of both sexes of the alligator Caiman latirostris was collected and incubated in culture medium. Conventional as well as chromosomal banding (C and NOR) techniques were used.The diploid number was determined as 42, being 24 telocentric, 12 metacentric and six submetacentric, with real lengths varying from 1.49 to 6.08, 1.63 to 3.71, and 2.41 to 3.19 mum, respectively. The fundamental number was 60. About 81% of the chromosomes were small and 19% medium in size. NOR-banding was presented for the first time for this species and it was verified that only one submetacentric pair (no. 20) was marked on arm q, and under conventional staining it presented a secondary constriction. There was no association between NOR marked chromosomes.
Resumo:
Sorption isotherms were determined for salted alligator's meat at four different temperatures (10degreesC, 15degreesC, 25degreesC and 35degreesC), using a standard gravimetric method. The goodness of fit of five sorption models to experimental data was determined. Five models, namely the GAB, the BET, the Halsey, the Henderson and the Hailwood and Horrobin, were evaluated to determine the best fit for the experimental data. The GAB was the best fitted model for the data of salted alligator's meat with an average error less than 10% for temperature of 10degreesC and less than 5% for the others temperatures. The coefficients of determination (r(2)) were 0.99 for all temperatures considered. The monolayer values decreased as temperature increased. The other four models were not appropriated to fit the data because of the high error values, although the r(2) were also similar to the GAB model. The net isosteric heat of sorption was estimated from equilibrium sorption data, using the Clausis-Clapeyron equation. Isosteric heats of sorption were found to increase with increasing temperature and could be well adjusted by an exponential relationship. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The phagocytic process in cells depends on lysosomal enzymes, high-energy metabolism and cellular recognition. In this paper, we investigated the presence of energy and recognition factors in thrombocytes of turtle Phrynopys hilarii (a freshwater South American species). Turtle thrombocytes (P. hilarii) present glycogen - possibly β particles - dispersed in their cytoplasm and glycoproteins in the cell surface, as well as a large number of enzymes involved in the endocytic process (Pellizzon, 1996). The activity of these enzymes depends on high-energy metabolism and on cellular recognition provided by specific glycoconjugates (Alberts et al., 1994). This metabolic characterization is demonstrated by the large amount of glycogen particles observed in the cytoplasm by Thiéry's method. Glycogen labeling was also observed when concanavalin A-peroxidase was used as a marker for thrombocytes and for endocyted charcoal particles. Our results show that these cells have phagocytic ability, suggesting that their function in blood circulation is not limited to aggregation but may also involve a great potential for phagocytosis.