49 resultados para Alginato cálcico

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJETIVOS: O presente estudo teve como objetivo cultivar condrócitos retirados da articulação do joelho de coelhos encapsulados em hidrogel de alginato (HA) e caracterizar a produção de matriz extracelular (ECM). MÉTODOS: A cartilagem articular foi removida do joelho de coelhos, com três a seis meses, fragmentada em pedaços de 1mm e submetida à digestão enzimática. Uma concentração de 1x106 céls/mL foram ressuspensas em uma solução de alginato de sódio a 1,5% (w/v), em seguida fez-se o processo de gelatinização em CaCl2 (102 mM), permitindo a formação do HA e cultivo em meio DMEM-F12 durante quatro semanas. A distribuição das células e a ECM foram acessadas através das secções histológicas coradas com e azul de toluidina hematoxilina e eosina (HE). RESULTADOS: Houve um aumento no número e na viabilidade dos condrócitos durante as quatro semanas de cultura. Através das análises histológicas dos HAs corados com azul de toluidina e HE foi possível observar a distribuição definida dos condrócitos no hidrogel, assemelhando-se a grupos isógenos e formação de matriz territorial. CONCLUSÃO: Este estudo demonstrou a eficiência do HA como arcabouço para ser usado na cultura de condrócitos, constituindo uma alternativa no reparo de lesões na cartilagem articular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alginate is a biopolymer used for a variety of industrial applications, for example, in the textiles, cosmetics, foods, agricultural and biotechnological industries. This biopolymer is traditionally extracted from some brown seaweeds (Phaeophyceae) and can be produced by bacteria isolated from soil, as Azotobacter vinelandii, like capsular polysaccharide using glucose, sucrose, among others as carbon sources. The main difference between the alginate of seaweed and the bacterial ones, is the biggest degree of acetylation of this last one, with great influence in the gel force. These chemical characteristics and production of bacterial alginate are presented in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response surface methodology as a tool for assessing the production of alginate and polyhydroxybutirate by Azotobacter vinelandii. Alginate is a polysaccharide extracted from cell walls of brown algae and used in the food, pharmaceuticals and biotech industries. Production is concentrated on the cultivation of brown seaweed, but several bacteria of the genus Pseudomonas and Azotobacter produce alginate. The chemical structure of alginates produced by algae is similar to those synthesized by A. vinelandii. The bacteria also produce intracellular polymers such as polyhydroxybutyrate (PHB), known as bioplastic. This work studied the simultaneous alginate and PHB production by A. vinelandii using sucrose and different parameters of fermentation in an orbital shaker. The optimal values for the production of these compounds were determined by the MSR. The first experiment was a 2(6-2) factorial design. The second was based on significant variables of the first, resulting in a full 3(3-0) factorial design. From the first to the second, an increase was observed in the PHB productivity from 12 to 45 mg g(-1) cell h(-1) and alginate from 100 to 1,600 mg g(-1) of cell h(-1). The productivity of both compounds was in the maximum incubation temperature of 62 degrees C, in the shortest time of incubation (18h) and the sucrose concentration, 11 g L(-1). In both experiments the PHB extracted presented purity of 94%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study aims at evaluating dimensional alteration of stone casts made from impressions with a standard irreversible hydrocolloid and an antimicrobial one. For this, an alginate without disinfectant (Type II Jeltrate) and other containing chlorhexidine (Type II Avagel) were used, which rose by the same regime of treatment: without disinfection; immersion; and spraying. A 1% sodium hypochlorite solution was used for 10 minutes. To obtain the impressions, a perforated impression tray was made from a standard metal model. After molding, the molds were washed in running water for 30 seconds to simulate removal of saliva. Then, with the exception of the control group, these molds were subjected to disinfection treatment. After 10 minutes they were washed again. 60 samples poured with type V special gypsum (Durone) were obtained, that were measured 3 times in a stereomicroscope (SZX12, Olympus) to record the average of dimensional alterations. The disinfection treatment did not bring significant changes in the models obtained from both alginate tested (standard p = 0.7102; with chlorhexidine p = 0.5832). The results showed a statistically significant and additional advantage of the traditional alginate on alginate with chlorhexidine, with respect to dimensional alteration (p < 0.05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dental trade has offered dental impression and dental stone for orthodontic use ensuring accurate models. The compatibility between these materials is defined by the wetting of the model surfaces by the mixture water/stone poured over it and the influenced by the method of disinfection of model and disinfectant solution used. It was evaluated the influence of spray disinfection with sodium hypochlorite 1% on the wettability of two commercial alginate (Jeltrate ® - Dentsply and Orthoprint ® - Zhermack) at two commercial type III gypsum (Rio ® - ME and AOBussoli Orthogesso Orthogesso ®-SA). Twenty models were fabricated for each type of alginate, which were divided into two groups (water and sodium hypochlorite), receiving respectively water and sodium hypochlorite 1% spray. Each group of models was then further divided into two subgroups, and on their surface were poured 2 ml of type III gypsum (Gesso Rio® or Orthogesso®). Reached the final setting of the gypsum specimens were sectioned vertically and medially, settled water with sandpaper No. 400 and mounted on suitable device for reading (in the right and left) of the contact angle Carl Zeiss microscope (precision, 001). The results were submitted to ANOVA and founded statistical significance for solutions used. It was concluded that sodium hypochlorite spray improved wettability of alginates studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cares at the manipulation of the alginate (condensation, disinfection of the impression and the time elapsed until the leak of the plaster) deserve special attention considering the great amount of distortions occurring every time the impression is not fill of plaster in a brief space of time and appropriate storage conditions. Besides its adaptation to the plaster suffers influence of the events happened after the impression is removed of the mouth. The purpose of this research was to evaluate the wetting capacity of three brands of alginate (Jeltrate™,Hydrogum™ e Orthoprint™) by the plaster type III (Rio™) under the influence of disinfection by sodium hypochlorite 1% sprays and the time of storage of 15 minutes,30 minutes, 1 hour, 6, 12 and 24 hours. There were made 60 impressions of each brand of alginate divided in two groups (water and sodium hypochlorite 1%) rearranged after the application of the sodium hypochlorite spray according to the storage time (15 or 30 minutes and 1,6,12, or 24 hours). On the surface of the impressions 2ml of plaster were flowed, proportioned and condensed in agreement with manufacturer‘s instructions. After the final setting expansion the casts were sectioned vertically and medially, regularized at the cut surface (emery paper 400) and setted for reading the contact angle at the microscope Carl Zeiss. The obtained results, submitted to statistical treatment (ANOVA) revealed significant differences when compared the employed solutions (water and sodium hypochlorite 1%) and the time of storage. The sodium hypochlorite 1% exhibited the smallest contact angles and the times of storage of 15 minutes and 6 hours the smallest and larger angles, respectively. It can be concluded that the alginate impressions exhibited larger adaptation to the plaster when disinfected by hypochlorite of sodium 1% and stocked by 15 minutes.