32 resultados para Al2O3 Korund

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports on the preparation of Al2O3-TiO2 ceramics by high-energy ball milling and sintering, varying the molar fraction in 1:1 and 3:1. The powder mixtures were processed in a planetary Fritsch P-5 ball mill using silicon nitride balls (10 mm diameter) and vials (225 mL), rotary speed of 250 rpm and a ball-to-powder weight ratio of 5:1. Samples were collected into the vial after different milling times. The milled powders were uniaxially compacted and sintered at 1300 and 1500 degrees C for 4h. The milled and sintered materials were characterized by X-ray diffraction and electron scanning microscopy (SEM). Results indicated that the intensity of Al2O3 and TiO2 peaks were reduced for longer milling times, suggesting that nanosized particles can be achieved. The densification of Al2O3-TiO2 ceramics was higher than 98% over the relative density in samples sintered at 1500 degrees C for 4h, which presented the formation of Al2TiO5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co-doped alumina powders were synthesized by means of the polymeric precursor method to obtain ceramic pigments. The effect of different contents of Co2+ on phase transition gamma to alpha-Al2O3 and appearing of CoAl2O4 spinel were studied by means of X-ray diffraction. A partial phase diagram of the system CoAl2O3 was proposed from these data by means of determination of the percentages of these phases according to the calcining temperature. Critical particle size to phase transition was determined by means of calculations of crystallite size and determination of superficial area through the BET method. UV-vis spectroscopy of the samples allow to compare the band shift with the phase transition. Besides, a study of thermal stability and intensity of the blue coloration of the synthesized powders with the presence of cobalt in relation to the calcining temperature was accomplished and compared to the phase transition. The results show that the higher blue color intensity was obtained for the powders with Co-doped gamma-Al2O3 closest of phase transition to alpha-Al2O3 + CoAl2O4. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the La1.8Eu0.2O3 coating on nanometric alpha-alumina, alpha-Al2O3@La1.8Eu0.2O3, was prepared for the first time by a soft chemical method. The powder was heat-treated at 100, 400, 800 and 1200 degrees C for 2 h. X-ray powder diffraction patterns (XRD), transmission electronic microscopy (TEM), emission and excitation spectra, as well as Eu3+, lifetime were used to characterize the material and to follow the changes in structure as the heating temperature increases. The Eu3+ luminescence data revealed the characteristic transitions D-5(0) --> F-7(J) (J = 0, 1 and 3) of Eu3+ at around 580, 591 and 613 nm, respectively, when the powders were excited by 393 nm. The red color of the samples changed to yellow when the powder was annealed at 1200 degrees C. The decrease in the (D-5(0) --> F-7(2))/(D-5(0) --> F-7(1)) ratio from around 5.0 for samples heated at lower temperatures to 3.1 for samples annealed at 1200 degrees C is consistent with a higher symmetry of the Eu3+ at higher temperature. The excitation spectra of the samples also confirms this change by the presence of a more intense and broad band at around 317 nm, instead of the presence of the characteristic peak at 393 mn, which corresponds to the F-7(0) --> L-5(6) transition of the Eu3+. The lifetimes of the D-5(0) --> F-7(2) transition of Eu3+ for the samples heat-treated at 100, 400, 800 and 1200 degrees C was evaluated as 0.57, 0.72, 0.43 and 0.31 ms, respectively. (C) 2006 Elsevier Ltd. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional hydrotreating catalysts are constituted by molybdenum deposited on Al2O3 promoted by nickel and phosphorous. Several studies have shown that TiO2-Al2O3 mixed oxides are excellent supports for the active phases. Results concerning the preparation, characterization and testing of molybdenum catalyst supported on titania-alumina are presented. The support was prepared by sol-gel route using titanium and aluminum isopropoxides, the titanium one chelated with acetylacetone (acac) to promote similar hydrolysis ratio for both the alcoxides. The effect of nominal molar ratio [Ti]/[Ti+Al] on the microstructural features of nanometric particles was analyzed by X-Ray Diffraction, N-2 Adsorption Isotherms and Transmission Electron Microscopy. The catalytic activity of Mo impregnated supports was evaluated using the thiophene hydrodesulfurization at different temperatures and atmospheric pressure. The pores size distribution curve moves from the micropores to the mesopores by increasing the Ti contents, allowing the fine tuning of average size from 2.5 to 6 nm. Maximal (367 m(2).g(-1)) and minimal (127 m(2).g(-1)) surface area were found for support containing [Ti]/[Ti+Al] ratio equal to 0.1 and 1, respectively. The good mesopore texture of alumina-titania support with [Ti]/[Ti+Al] molar ratio between 0.3 and 0.5 was found particularly valuable for the preparation of well dispersed MoS2 active phase, leading to HDS catalyst with somewhat higher activity than that prepared using a commercial alumina support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZrO2 powder was coated with Al2O3 precursor generated by a polymeric precursor method in aqueous solution. The system of nanocoated particles formed a core shell-like structure in which the particle is the core and the nanocoating (additive) is the shell. A new approach is reported in order to control the superficial mass transport and the exaggerated grain growth during the sintering of zirconia powder. Transmission electron microscopy (TEM) observations clearly showed the formation of an alumina layer on the surface of the zirconia particles. This layer modifies the sintering process and retards the maximum shrinkage temperature of the pure zirconia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under "solvent free" conditions and promoted by MW (microwave) irradiation. A "two sites" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineering ceramics have found use in many applications, such as engine parts, ball bearings, artificial bone and hip replacements and gyroscopes, because of their good chemical inertness, hardness, high temperature stability and excellent wear resistance. Oxide ceramic may meet these demands. Alumina (Al2O3) ceramics offer a high potential for many engineering applications, such as wear- and/or corrosion-resistant components, and as material for substrates or housings in microelectronic devices. Alumina is used among other things for seal ring, draw-cones, guides, water mixing tapes, bearing parts, medical prostheses and cutting tools. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occurs in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in Al2O3 samples using commercial starch. These measurements were carried out in a torsion pendulum operating in frequencies around 40 Hz. The results shown strongly influence of the type of forming in the elastic modulus obtained by anelastic relaxation measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide has wakened up great scientific and technological interest for its potential use in varistors production and as gas sensor. In order to improve the microstructural and electrical properties in SnO varistor ceramics, the influence of differents dopants used, like TiO2 and Al2O3, is under research. The effect of TiO2 and Al2O3 on the properties of Sn-Co-Nb varistor Systems obtained by the Pechini method has been investigated in this work. Characterization of synthesized raw material was performed by X-Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM). The microstructural and electrical characterization of sintered samples show that the TiO2 favors the grain growth and the Al2O3, contributes to the decrease it, effect that is manifested in the Sn-Co-Nb varistor systems. Breakdown field increase up to 6300V/cm with increasing Al2O3 content and non-linear coefficients with α=22 were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation by means of annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 °C is responsible for reasonable oxidation, which is accelerated up to 8 times for O2-rich atmosphere. Results of surface electrical resistivity and Raman spectroscopy are in good agreement with these findings. Surprisingly, X-ray and Raman data suggest also the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. © 2013 Elsevier Ltd and Techna Group S.r.l.