219 resultados para Ajuste de parâmetros de transformação

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of mathematical modeling assists in evaluation of the capacity of production and measurement of generation time of biogas in landfills, enabling the implantation of projects of energy generation from methane. Thus, the work aims, by simulating scenarios of potential methane generation in the landfill in Rio Claro, the use of field data from methane flow and waste grounded parameters as references for selecting values of k e L0 used to estimate methane generation model in LandGEM. As a result it was found that compared the characteristics adopted in the four scenarios recommended by the USEPA literature with those found in the landfill of Rio Claro (high amount of organic matter in the waste landed and daily practice of leachate recirculation), the scenario that apparently better represent the rate of methane generation is the scenario 01, with k = 0.7 and L0 = 96. Now, the adjustment of parameters in relation to the data field of methane flow, the value of L0 which best fits the methane generation from the landfill in Rio Claro is 150, while for k the line behavior that best represents the reality are values between 0.7 and 0.3. Regarding the parameters of the waste grounded, between the suggested values of k, 0,3 is most consistent with the intermediate level of biological degradation of the residue grounded, while L0 due to the biodegradability of the waste, a new value between 120 and 150 may be more appropriate for the study

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Foram realizados quatro estudos de simulação para verificar a distribuição de inversas de variáveis com distribuição normal, em função de diferentes variâncias, médias, pontos de truncamentos e tamanhos amostrais. As variáveis simuladas foram GMD, com distribuição normal, representando o ganho médio diário e DIAS, obtido a partir da inversa de GMD, representando dias para se obter determinado peso. em todos os estudos, foi utilizado o sistema SAS® (1990) para simulação dos dados e para posterior análise dos resultados. As médias amostrais de DIAS foram dependentes dos desvios-padrão utilizados na simulação. As análises de regressão mostraram redução da média e do desvio-padrão de DIAS em função do aumento na média de GMD. A inclusão de um ponto de truncamento entre 10 e 25% do valor da média de GMD reduziu a média de GMD e aumentou a de DIAS, quando o coeficiente de variação de GMD foi superior a 25%. O efeito do tamanho dos grupos nas médias de GMD e DIAS não foi significativo, mas o desvio-padrão e CV amostrais médios de GMD aumentaram com o tamanho do grupo. em virtude da dependência entre a média e o desvio-padrão e da variação observada nos desvios-padrão de DIAS em função do tamanho do grupo, a utilização de DIAS como critério de seleção pode diminuir a acurácia da variação. Portanto, para a substituição de GMD por DIAS, é necessária a utilização de um método de análise robusto o suficiente para a eliminação da heterogeneidade de variância.