96 resultados para Airflow resistivity
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698405]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This article compares the efficiency of induced polarization (IP) and resistivity in characterizing a contamination plume due to landfill leakage in a typical tropical environment. The resistivity survey revealed denser electrical current flow that induced lower resistivity values due to the high ionic content. The increased ionic concentration diminished the distance of the ionic charges close to the membrane, causing a decrease in the IP phenomena. In addition, the self-potential (SP) method was used to characterize the preferential flow direction of the area. The SP method proved to be effective at determining the flow direction; it is also fast and economical. In this study, the resistivity results were better correlated with the presence of contamination (lower resistivity) than the IP (lower chargeability) data.
Resumo:
We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.
Resumo:
The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.
Resumo:
Resistivity (DC) method using vertical electrical soundings (Schlumberger array) are conducted In the vicinity of Canoas/RS, applied to environmental studies with the objective of Investigating groundwater conditions, The present paper shows a geoelectrlcal Identification of the lithology and an estimate of the relationship between the resistivity and Dar Zarrouk parameters (transverse unit resistance and longitudinal unit conductance) with the properties such as aquifer transmlssivlty and protection of ground water resources, In the saturated sediments, resistivity values defined the following sequence: clay layers (resistivity < 40 ohm-m) and sand layers (resistivity > 40 ohm-m), Two sand layers were identified; one corresponding to the unconfined aquifer and another to the confined aquifer between two clay layers, In the map of the transverse unit resistance of the unconfined aquifer, the tendencies of high values can be associated with the zones of high transmissivity; hence, these zones are suggested for the installation of monitoring wells, The map of longitudinal conductance Illustrates the Impermeability of the confining clay layer, Values of S > 1.0 siemens would indicate zones in which the confined aquifer would be protected; In comparison, values of S < 1.0 siemens would indicate zones of probable risks of contamination. © 2006 Sociedade Brasileira de Geofísica.
Resumo:
This paper presents two case histories from Brazil where geophysical and resistivity piezocone tests were carried out to detect contamination. At the first one, the site investigation program was carried out to detect salt-water intrusions in a superficial sedimentary aquifer, at the Paranaguá harbor, in Paraná State. The second case history is a sanitary landfill from Bauru City, São Paulo State. In both sites, superficial geophysical tests were interpreted to detect and delineate the shape of contamination plume, helping to locate the resistivity piezocone tests. It was found that the interpretation of resistivity piezocone tests is straightforward to assess salt-water intrusion in sedimentary sands. For tropical soils, this technique presented some limitations since the groundwater table sometimes is deeper than the layer penetratable to the cone. Moreover, the genesis of those soils affects soil behavior and soil and water sampling is required to support interpretation.
Resumo:
The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.