5 resultados para Agricultural chemistry
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The size distributed composition of ambient aerosols is used to explore seasonal differences in particle chemistry and to show that dry deposition fluxes of soluble species, including important plant nutrients, increase during periods of biomass (sugar cane trash) burning in São Paulo State, Brazil. Measurements were made at a single site centrally located in the State's sugar cane growing region but away from the immediate vicinity of burns, so that the air sampled was representative of the regional background. Calculation of ion equivalent balances showed that during burning periods smaller particles (Aitken and accumulation modes) were more acidic, containing higher concentrations of SO(4)(2-), oxalate, NO(3)(-), HCOO(-), CH(3)COO(-), and Cl(-), but insufficient NH(4)(+) and K(+) to achieve neutrality. Larger particles showed an anion deficit due to the presence of unmeasured ions and comprised resuspended dusts modified by accumulation of nitrate, chloride, and organic anions. Increases of resuspended particles during the burning season were attributed to release of earlier deposits from the surfaces of burning vegetation as well as increased vehicle movement on unsurfaced roads. During winter months the relative contribution of combined emissions from road transport and industry diminished due to increased emissions from biomass combustion and other activities specifically associated with the harvest period. Positive increments in annual particulate dry deposition fluxes due to higher fluxes during the sugar cane harvest were 44.3% (NH(4)(+)), 42.1 % (K(+)), 31.8% (Mg(2+)), 30.4% (HCOO(-)), 12.8% (Cl(-)), 6.6% (CH(3)COO(-)), 5.2% (Ca(2+)), 3.8% (SO(4)(2-)), and 2.3% (NO(3)(-)). Na(+) and oxalate fluxes were seasonally invariant. Annual aerosol dry deposition fluxes (kg ha(-1)) were 0.5 (Na(+)), 0.25 (NH(4)(+)), 0.39 (K(+)), 0.51 (Mg(2+)), 3.19 (Ca(2+)), 1.34 (Cl(-)), 4.47 (NO(3)(-)), 3.59 (SO(4)(2-)), 0.58 (oxalate), 0.71 (HCOO(-)), and 1.38 (CH(3)COO(-)). Contributions of this mechanism to combined aerosol dry deposition and precipitation scavenging (inorganic species, excluding gaseous dry deposition) were 31% (Na(+)), 8% (NH(4)(+)), 26% (K(+)), 63% (Mg(2+)), 66% (Ca(2+)), 32% (Cl(-)), 33% (NO(3)(-)), and 36% (SO(4)(2-)).
Resumo:
Experimental data on the precipitation chemistry in the semi-arid savanna of South Africa is presented in this paper. A total of 901 rainwater samples were collected with automatic wet-only samplers at a rural site, Louis Trichardt, and at an industrial site, Amersfoort, from July 1986 to June 1999. The chemical composition of precipitation was analysed for seven inorganic and two organic ions, using ion chromatography. The most abundant ion was SO(4)(2-) and a large proportion of the precipitation is acidic, with 98% of samples at Amersfoort and 94% at Louis Trichardt having a pH below 5.6 ( average pH of 4.4 and 4.9, respectively). This acidity results from a mixture of mineral and organic acids, with mineral acids being the primary contributors to the precipitation acidity in Amersfoort, while at Louis Trichardt, organic and mineral acids contribute equal amounts of acidity. It was found that the composition of rainwater is controlled by five sources: marine, terrigenous, nitrogenous, biomass burning and anthropogenic sources. The relative contributions of these sources at the two sites were calculated. Anthropogenic sources dominate at Amersfoort and biomass burning at Louis Trichardt. Most ions exhibit a seasonal pattern at Louis Trichardt, with the highest concentrations occurring during the austral spring as a result of agricultural activities and biomass combustion, while at Amersfoort it is less pronounced due to the dominance of relatively constant industrial emissions. The results are compared to observations from other African regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Agroindustrial by-products and residues from treatment of sewage sludge have been recently recycled as soil amendments. This study was aimed at assessing toxic potential of biosolid, obtained from a sewage treatment plant (STP), vinasse, a by-product of the sugar cane industry, and a combination of both residues using Allium cepa assay. Bioprocessing of these samples by a terrestrial invertebrate (diplopod Rhinocricus padbergi) was also examined. Bioassay assembly followed standards of the Brazilian legislation for disposal of these residues. After adding residues, 20 diplopods were placed in each terrarium, where they remained for 30 days. Chemical analysis and the A. cepa assay were conducted before and after bioprocessing by diplopods. At the end of the bioassay, there was a decrease in arsenic and mercury. For the remaining metals, accumulation and/or bioavailability varied in all samples but suggested bioprocessing by animals. The A. cepa test revealed genotoxic effects characterized by different chromosome aberrations. Micronuclei and chromosome breaks on meristematic cells and F1 cells with micronuclei were examined to assess mutagenicity of samples. After 30 days, the genotoxic effects were significantly reduced in the soil + biosolid and soil + biosolid + vinasse groups as well as the mutagenic effects in the soil + biosolid + vinasse group. Similar to vermicomposting, bioprocessing of residues by diplopods can be a feasible alternative and used prior to application in crops to improve degraded soils and/or city dumps. Based on our findings, further studies are needed to adequately dispose of these residues in the environment. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Forest fragmentation occurs normally in an area around the city or with high agricultural influence, such as the Forest of Quilombo that lies in Metropolitan Campinas/SP- Brazil. This forest is one such example since it is separated from the other forest fragments in the region for several types of human action. The objective of this study is to analyze the macro and micronutrients and soil edaphic insect fauna in the forest, pasture and sugar cane and inferring the impacts caused by the Mata do Quilombo cattle farming and urban expansion in chemical aspects of soil. Samples were collected in June/11, according to the procedure of method traps pitfall traps. In addition, at each sampling point four composite samples were collected for soil fertility analysis. Samples were collected at six points: pasture, degraded forest (near pasture), preserved forest (near pasture), degraded forest (near cane sugar), preserved forest (near cane sugar), and sugar cane sugar. The samples thus prepared were analyzed Ca, P, K, Mg, pH, organic matter, H + Al, Sum of Base (SB), Base Percentage Saturation (V%), Cation Exchange Capacity (CEC) and trace elements (S, B, Cu, Fe, Mg and Zn). Generally it can be seen that the group of organisms of soil fauna presented with little biodiversity. The number of individuals also shows little species, taxonomic groups showing the highest degree of impact that the remaining forest has suffered. Regarding the analysis of fertility it can be observed that the soil of the surrounding areas of the forest is under direct influence of agriculture. © 2013 WIT Press.