153 resultados para Ag atoms
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The study of the kinetics of martensitic phase decomposition in the Cu-10wt.%Al alloy with Ag additions showed that the presence of Ag retarded the eutectoid decomposition reaction and enhanced martensite stabilization. This stabilization effect was attributed to Ag atoms redistribution as structure defects, increase in the numbers of Cu-Al pairs due to Ag-Al interaction and the Al atoms redistribution around one Cu atom at the sub-lattice of the martensitic crystal. © 2008 Trans Tech Publications.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The eutectoid transformation may be defined as a solid-state diffusion-controlled decomposition process of a high-temperature phase into a two-phase lamellar aggregate behind a migrating boundary on cooling below the eutectoid temperature. In substitutional solid solutions, the eutectoid reaction involves diffusion of the solute atoms either through the matrix or along the boundaries or ledges. The effect of Ag on the non-isothermal kinetics of the reverse eutectoid reaction in the Cu-9 mass%Al, Cu-10 mass%Al, and Cu-11 mass%Al alloys were studied using differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The activation energy for this reaction was obtained using the Kissinger and Ozawa methods. The results indicated that Ag additions to Cu-Al alloys interfere on the reverse eutectoid reaction, increasing the activation energy values for the Cu-9 mass%Al and Cu-10 mass%Al alloys and decreasing these values for the Cu-11 mass%Al alloy for additions up to 6 mass%Ag. The changes in the activation energy were attributed to changes in the reaction solute and in Ag solubility due to the increase in Al content.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work the influence of Ag additions on the thermal behavior of the Cu-11 mass% Al alloy was studied using differential scanning calorimetry, in situ X-ray diffractometry and scanning electron microscopy. The results indicated that changes in the heating rate shift the peak attributed to alpha phase formation to higher temperatures, evidencing the diffusive character of this reaction. The activation energy value for the alpha phase formation reaction, obtained from a non-isotherm kinetic model, is close to that corresponding to Cu atoms self diffusion, thus confirming that this reaction is dominated by Cu atoms diffusion through the martensite matrix.
Resumo:
By combining galvanic displacement and electrodeposition techniques, an ordered Fe20Rh80 structure deposited onto brass was investigated by X-ray diffractometry, Mössbauer spectroscopy and magnetization measurements. Mössbauer and X-ray diffraction analyses suggest that the Fe-Rh alloy directly electrodeposited onto brass displays a nanocrystalline state while a similar alloy deposited onto Ag/brass shows a faced centered cubic-like structure, with dendrites-like features. These results directly indicate that the presence of Ag seed layer is responsible for the Fe-Rh alloy crystallization process. In addition, room temperature Mössbauer data indicate firstly paramagnetic states for two Fe-species. In the dominant Fe-species (major fraction of the Mössbauer spectra), Fe atoms are situated at a cubic environment and it can be attributed to the γ-Fe20Rh80 alloy based on their hyperfine parameters. In the second species, Fe atoms are placed in a non-local symmetry, which can be related to Fe atoms at the grain boundaries or/and Fe small clusters. These Fe-clusters are in superparamagnetic state at room temperature, but they may be ordered below 45 K, as suggested by magnetization data. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Nanotechnology, the science of minuscule, has developed products which are able t o manipulate atoms and molecules that could be applied in the sterilization process of dental instruments. Objetives: The objective of the present study was to evaluate the self-cleaning action of TiO2 and Ag nanoparticles coating on dental instruments by the photocataliys process under UV and visible light irradiation. Material and method: Microbiologic tests were done using dental cement spatulas coated with TiO2 and Ag nanoparticles (one or three layers), and contaminated with 10 mcrl of Pseudomonas aeruginosa and Enterococcus faecalis, respectively. After contamination, they were exposed to ultraviolet light and visible light for 120 minutes. Next, they were transferred to and stored in test tubes with BHI (Brain Heart Infusion) and incubated in 35 to 37 °C. Checking times for bacterial growth and for control and retrieval tests were done at: 24, 48, 72 and 96 hours. Result: The Pseudomonas aeruginosa was inactive after 120 minutes of ultraviolet light irradiation, thus confirming the heterogeneous photocatalytic activity of TiO2 and Ag. The Pseudomonas aeruginosa was not inactivated under visible light irradiation and the Enterococcus faecalis was not inactivated under UV and visible light irradiation of the dental cement spatulas coated with TiO2 and Ag nanoparticles in the readings to 96 hours, showing bacterial growth. Conclusion: There were no influence of one or three layers of TiO2 and Ag nanoparticles coating of the spatulas in the results. The heterogeneous photocatalysis activity of TiO2 and Ag under UV light irradiation was confirmed for Pseudomonas aeruginosa but not under visible light. Enterococcus faecalis did not confirmed the photocatalytics activity of TiO2 and Ag under UV light irradiation and visible lights irradiation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new rot caused by a binucleate Rhizoctonia sp. affecting the tuberous root cortex of the domesticated yacon (Smallanthus sonchifolius) has been observed in Brazil. Isolates of a binucleate Rhizoctonia sp. were collected from roots with rot symptoms and characterized by the number of nuclei per cell, hyphal anastomosis, RAPD molecular markers, ITS-5.8S rDNA sequence and pathogenicity tests. All isolates had a mean of 1.9-2.2 nuclei per cell and anastomosed with the binucleate Rhizoctonia sp. AG G-tester strain. RAPD analysis was carried out between 11 isolates recovered from yacon and 11 AG (A, Ba, Bb, Bo, C, D, F, G, O, P, Q) standard testers of binucleate Rhizoctonia sp. Genetic similarities of 94.8-100% were observed among isolates of the binucleate Rhizoctonia sp. from yacon and all isolates were genetically more closely related to the AG G tester than other strains according to UPGMA analysis using RAPD markers. Homologies of complete ITS nucleotide sequences were 100% between binucleate isolates of Rhizoctonia sp. from yacon and the AG G tester. According to pathogenicity tests, the isolates caused typical rot symptoms of yacon tubers 90 days after inoculation.
Resumo:
Fungi isolated in Brazil, from lettuce, broccoli, spinach, melon and tomato, were identified as Rhizoctonia solani. All lettuce isolates anastomosed with both AG 1-IA and IB subgroups and all isolates from broccoli, spinach, melon and tomato anastomosed with AG 4 subgroup HG-I, as well as with subgroups HG-II and HG-III. DNA sequence analyses of ribosomal internal transcribed spacers showed that isolates from lettuce were AG 1-IB, isolates from tomato and melon were AG 4 HG-I, and isolates from broccoli and spinach were AG 4 HG-III. The tomato isolates caused stem rot symptoms, the spinach, broccoli and melon isolates caused hypocotyl and root rot symptoms on the respective host plants and the lettuce isolates caused bottom rot. This is the first report on the occurrence in Brazil of R. solani AG 4 HG-I in tomato and melon, of AG 4 HG-III in broccoli and spinach and of AG 1-IB in lettuce.