19 resultados para Affine models

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The construction of non-Abelian affine Toda models is discussed in terms of its underlying Lie algebraic structure. It is shown that a subclass of such non-conformal two-dimensional integrable models naturally leads to the construction of a pair of actions, which share the same spectra and are related by canonical transformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges, all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We construct a centerless W-infinity type of algebra in terms of a generator of a centerless Virasoro algebra and an abelian spin 1 current. This algebra conventionally emerges in the study of pseudo-differential operators on a circle or alternatively within KP hierarchy with Watanabe's bracket. Construction used here is based on a spherical deformation of the algebra W ∞ of area preserving diffeomorphisms of a 2-manifold. We show that this deformation technique applies to the two-loop WZNW and conformal affine Toda models, establishing henceforth W ∞ invariance of these models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use Hirota's method formulated as a recursive scheme to construct a complete set of soliton solutions for the affine Toda field theory based on an arbitrary Lie algebra. Our solutions include a new class of solitons connected with two different types of degeneracies encountered in Hirota's perturbation approach. We also derive an universal mass formula for all Hirota's solutions to the affine Toda model valid for all underlying Lie groups. Embedding of the affine Toda model in the conformal affine Toda model plays a crucial role in this analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The non-conformal analogue of Abelian T-duality transformations relating pairs of axial and vector integrable models from the non-Abelian affine Toda family is constructed and studied in detail.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general construction of affine nonabelian (NA)-Toda models in terms of the axial and vector gauged two loop WZNW model is discussed. They represent integrable perturbations of the conformal sigma -models (with tachyons included) describing (charged) black hole type string backgrounds. We study the off-critical T-duality between certain families of axial and vector type integrable models for the case of affine NA-Toda theories with one global U(1) symmetry. In particular we find the Lie algebraic condition defining a subclass of T-selfdual torsionless NA-Toda models and their zero curvature representation. (C) 2001 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic construction for an action describing a class of supersymmetric integrable models as well as for pure fermionic theories is discussed in terms of the gauged WZNW model associated to half integer graded affine Kac-Moody algebras. Explicit examples of the N = 1. 2 super-sinh(sine)-Gordon models are discussed in detail. Pure fermionic theories arises for cosets sl(p, 1)/sl(p) circle times u(1) when a maximal kernel condition is fulfilled. The integrability condition for such models is discussed and it is shown that the simplest example when p = 2 (cads to the constrained Bukhvostov-Lipatov, Thirring, scalar massive and pseudo-scalar massless Gross-Neveu models. (C) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the current algebra of supersymmetric principal chiral models with a Wess-Zumino term. At the critical point one obtains two commuting super-affine Lie algebras as expected, but, in general, them are intertwining fields connecting both right and left sectors, analogously to the bosonic case. Moreover, in the present supersymmetric extension we have a quadratic algebra, rather than an affine Lie algebra, due to the mixing between bosonic and fermionic fields; the purely fermionic sector displays an affine Lie algebra as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.