64 resultados para Affine Homography
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
A submodel of the so-called conformal affine Toda model coupled to the matter field (CATM) is defined such that its real Lagrangian has a positive-definite kinetic term for the Toda field and a usual kinetic term for the (Dirac) spinor field. After spontaneously broken the conformal symmetry by means of BRST analysis, we end up with an effective theory, the off-critical affine Toda model coupled to the matter (ATM). It is shown that the ATM model inherits the remarkable properties of the general CATM model such as the soliton solutions, the particle/soliton correspondence and the equivalence between the Noether and topological currents. The classical solitonic spectrum of the ATM model is also discussed. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The sl(2) affine Toda model coupled to matter is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of two-dimensional QCD (one flavor and N colors). The corresponding string tension is computed when the dynamical quarks are in the fundamental representation of SU(N) and in the adjoint representation of SU(2).
Resumo:
The construction of non-Abelian affine Toda models is discussed in terms of its underlying Lie algebraic structure. It is shown that a subclass of such non-conformal two-dimensional integrable models naturally leads to the construction of a pair of actions, which share the same spectra and are related by canonical transformations.
Resumo:
The so-called conformal affine Toda theory coupled to the matter fields (CATM), associated to the (s) over capl(2) affine Lie algebra, is studied. The conformal symmetry is fixed by setting a connection to zero, then one defines an off-critical model, the affine Toda model coupled to the matter (ATM). Using the dressing transformation method we construct the explicit forms of the two-soliton classical solutions, and show that a physical bound soliton-antisoliton pair (breather) does not exist. Moreover, we verify that these solutions share some features of the sine-Gordon (massive Thirring) solitons, and satisfy the classical equivalence of topological and Noether currents in the ATM model. We show, using bosonization techniques that the ATM theory decouples into a sine-Gordon model and a free scalar. Imposing the Noether and topological currents equivalence as a constraint, one can show that the ATM model leads to a bag model like mechanism for the confinement of the color charge inside the sine-Gordon solitons (baryons).
Resumo:
The symmetry structure of the non-Abelian affine Toda model based on the coset SL(3)/SL(2) circle times U(1) is studied. It is shown that the model possess non-Abelian Noether symmetry closing into a q-deformed SL(2) circle times U(1) algebra. Specific two-vertex soliton solutions are constructed.
Resumo:
The conformal affine sl(2) Toda model coupled to the matter field is treated as a constrained system in the context of Faddeev-Jackiw and the (constrained) symplectic schemes. We recover from this theory either the sine-Gordon or the massive Thirring model, through a process of Hamiltonian reduction, considering the equivalence of the Noether and topological currrents as a constraint and gauge fixing the conformal symmetry. (C) 2000 Academic Press.
Resumo:
The teleparallel gravity theory, treated physically as a gauge theory of translations, naturally represents a particular case of the most general gauge-theoretic model based on the general affine group of spacetime. on the other hand, geometrically, the Weitzenbock spacetime of distant parallelism is a particular case of the general metric-affine spacetime manifold. These physical and geometrical facts offer a new approach to teleparallelism. We present a systematic treatment of teleparallel gravity within the framework of the metric-affine theory. The symmetries, conservation laws and the field equations are consistently derived, and the physical consequences are discussed in detail. We demonstrate that the so-called teleparallel GR-equivalent model has a number of attractive features which distinguishes it among the general teleparallel theories, although it has a consistency problem when dealing with spinning matter sources.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges, all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.
Resumo:
This paper presents an adaptation of the dual-affine interior point method for the surface flatness problem. In order to determine how flat a surface is, one should find two parallel planes so that the surface is between them and they are as close together as possible. This problem is equivalent to the problem of solving inconsistent linear systems in terms of Tchebyshev's norm. An algorithm is proposed and results are presented and compared with others published in the literature. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
As recently shown the conformal affine Toda models can be obtained via hamiltonian reduction from a two-loop Kac-Moody algebra. In this paper we propose a systematic procedure to analyze the higher spin symmetries of the conformal affine Toda models. The method is based on an explicit construction of infinite towers of extended conformal symmetry generators. Two fundamental building blocks of this construction are special spin-one and -two primary fields characterizing the conformal structure of these models. The connection to the algebra of area preserving diffeomorphisms on a two-manifold (w∞ algebra) is established.
Resumo:
It is shown that the affine Toda models (AT) constitute a gauge fixed version of the conformal affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota τ-functions are introduced and soliton solutions for the AT and CAT models associated to SL̂ (r+1) and SP̂ (r) are constructed.
Resumo:
We consider the Hamiltonian reduction of the two-loop Wess-Zumino-Novikov-Witten model (WZNW) based on an untwisted affine Kac-Moody algebra script Ĝ. The resulting reduced models, called Generalized Non-Abelian Conformal Affine Toda (G-CAT), are conformally invariant and a wide class of them possesses soliton solutions; these models constitute non-Abelian generalizations of the conformal affine Toda models. Their general solution is constructed by the Leznov-Saveliev method. Moreover, the dressing transformations leading to the solutions in the orbit of the vacuum are considered in detail, as well as the τ-functions, which are defined for any integrable highest weight representation of script Ĝ, irrespectively of its particular realization. When the conformal symmetry is spontaneously broken, the G-CAT model becomes a generalized affine Toda model, whose soliton solutions are constructed. Their masses are obtained exploring the spontaneous breakdown of the conformal symmetry, and their relation to the fundamental particle masses is discussed. We also introduce what we call the two-loop Virasoro algebra, describing extended symmetries of the two-loop WZNW models.
Resumo:
An affine sl(n + 1) algebraic construction of the basic constrained KP hierarchy is presented. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and it is shown that these approaches are equivalent. The model is recognized to be the generalized non-linear Schrödinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Bäcklund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. Our construction uncovers the origin of the Toda lattice structure behind the latter hierarchy. © 1995 American Institute of Physics.