11 resultados para Adsorption energy
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The rheological properties of tin oxide slurries were studied experimentally and theoretically. The deflocculants used were ammonium polyacrilate (PAA) and the copolymer poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB-PVA-PVAc), in water and ethanol, respectively. The amount of deflocculant was optimized for different solid contents by means of viscosity measurements. In spite of the high stability of PVB-dispersed slurries, a high solid concentration was not obtained. On the other hand, a slurry with a 56.4 vol.% of solids was attained when PAA was used. A theoretical study of the adsorption of PAA in its dissociated (basic solution) and non-dissociated (acidic solution) forms on SnO 2 (110) is presented. This analysis was made by means of the PM3 method using a large cluster Sn 15O 28 for the surface model. The calculated adsorption energy is larger for the ionized PAA than for the non-ionized form, indicating that alkaline slurries favor PAA adsorption on the SnO 2 surface. © 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Boron adsorption by soil is the main phenomenon that affects its availability to plants. This, the present study investigated the effect of liming on B adsorption by lowland soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples of three lowland soils [Gleissolo Haplico (GX), Plintossolo Haplico (FX) and Cambissolo Haplico (CX)], with different origin material and physicochemical properties were used. Samples with or without liming application were incubated during 60 days. Boron adsorption was accomplished by shaking 4.0g soil samples, for 24 h, with 20 mL of 0.01 mol L-1 CaCl2 solution containing different concentrations of B (0, 1, 2, 4, 8 and 16 mg L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. The adsorption isotherms indicated that the B adsorption increased with its increasing concentration in the equilibrium solution. Maximum adsorption capacity of B ranged from 3.0 to 13.9 mg kg(-1) (without liming) and 14.7 to 35.7 mg kg(-1) (with liming). Liming increased the amount of adsorbed B in Gleissolo Haplico and Plintossolo Haplico soils, although the bonding energy has decreased. The amount of adsorbed B by Cambissolo Haplico soil was not affected by liming application. The most important soil properties affecting the B adsorption in lowland soils were pH, clay content, exchangeable aluminum and iron oxide contents.
Resumo:
The isotherms of adsorption of MeX2 (Me = Cu2+, Co2+; X = Cl-, Br-, ClO4-) by silica gel chemically modified with 2-mercaptoimidazole (SiMI) were studied in acetone and ethanol solutions, at 25 degrees C. Covalently attached 2-mercaptoimidazole molecule to silica gel surface adsorbs MeX2 from solvent by forming a surface complex. The metal is bonded to the surface through the nitrogen atom of attached 2-mercaptoimidazole. At low loading, the electronic and ESR spectral parameters indicated that the Cu2+ complexes are in a distorted-tetragonal symmetry field. The d-d electronic transition spectra showed that for Cu(ClO4)(2) complex, the peak of absorption did not change for any degree of metal loading and for Cl- and Br- complexes, the peak maxima shifted to higher energy with lower metal loading. The CoX2(X = Cl-, Br-, ClO4-) analogues possess a distorted-tetrahedral field.
Resumo:
The isotherms of adsorption of CuX2 (X = Cl-, Br, ClO4-,) by silica gel chemically modified with thiazolidine-2-thione were studied in acetone (ac) and ethanol (eth) solutions at 25 degrees C. The following equilibrium constants (in 1 mol(-1)) were determined: a) CuCl2, 1.9 x 10(3) (ac), 1.6 x 10(3) (eth); b) CuBr2, 1.7 x 10(3) (ac), 1.2 x 10(3) (eth); c) Cu(ClO4)(2), 1.1 x 10(3) (ac), 1.0 x 10(3) (eth). The electron spin resonance spectra of the surface complexes indicate a tetragonal distorted structure in the case of lower degrees of metal loading on the chemically modified surface. The d-d electronic transition spectra show that for the ClO4- complex, the peak of absorption did not change for any degree of metal loading, and for Cl- and Br complexes, the peak maxima shift to higher energy with lower metal loading.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The isotherms of adsorption of CuX2 (X=Cl-, Br-, ClO- 4) by silica gel chemically modified with 2-aminothiazole were studied in acetone and EtOH solutions, at 25°C. The 2-aminothiazole molecule, covalently bond to the silica gel surface, adsorbs CuX2 from solvent by forming a surface complex. At low loading, the electronic and E.S.R. spectral parameters indicate that the Cu2+ complexes have a distorted tetragonal symmetry. The d-d eletronic transition spectra show that for ClO- 4 complex, the peak of absorption do not change for any degree of metal loading whilst for Cl- and Br- complexes, the peak maxima shift to higher energy with lower metal loading. © Elsevier Science Ltd.
Resumo:
Physical and chemical adsorption of CO 2 on ZnO surfaces were studied by means of two different implementations of periodic density functional theory. Adsorption energies were computed and compared to values in the literature. In particular, it was found that the calculated equilibrium structure and internuclear distances are in agreement with previous work. CO 2 adsorption was analyzed by inspection of the density of states and electron localization function. Valence bands, band gap and final states of adsorbed CO 2 were investigated and the effect of atomic displacements analyzed. The partial density of states (PDOS) of chemical adsorption of CO 2 on the ZnO(0001) surface show that the p orbitals of CO 2 were mixed with the ZnO valence band state appearing at the top of the valence band and in regions of low-energy conduction band. [Figure not available: see fulltext.] © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
In this work we investigate the adsorption of polyelectrolyte chains onto uniformly charged cylindrical macroions by means of the Metropolis Monte Carlo simulations and weighted histogram analysis method. Adopting a simplified model for macromolecules and treating the electrolytic solution in the Debye-Hückel level, conformational properties of the adsorbed chain, such as the radius of gyration and the thickness of the adsorbed layer, are provided as a function of ionic strength and macroion charge density. By analysis of the free energy profile as a function of the radius of gyration it was possible to identify first-order-like transitions between adsorbed and desorbed states and obtain a macroion charge density dependence of the critical ionic strength in good agreement with experiments. © 2013 AIP Publishing LLC.
Resumo:
Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)