93 resultados para Adenosine Triphosphatases

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The myotomal muscle of Synbranchus marmoratus was investigated using histochemical and immunohistochemical reactions. This musculature is composed of a superficial red compartment, uniformly distributed around the trunk circumferentially and also in the lateral line. The red compartment fibers are small in diameter and have an oxidative metabolism, a high rate of glycogen and a negative reaction to alkaline and acid myofibrillar ATPase (mATPase). The white muscle forms the bulk of the muscle mass. Its fibers are large in diameter and have a glycolytic metabolism, a negative reaction to glycogen, a strong reaction to alkaline mATPase and a negative reaction to acid mATPase. Between these two compartments there is an intermediate layer of fibers presenting a mosaic metabolism pattern with a high rate of glycogen. These fibers stained moderately for alkaline and acid m-ATPase. Several clusters of red muscles were observed inside the white muscle. Each cluster is composed of three fiber types, with a predominance of red and intermediate fibers. Reactivity to anti-MHC BA-D5 was positive only in the intermediate fibers. Reactivity to anti-MHC SC-71 was negative in all fiber types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We reexamined the morphological and functional properties of the hyoid, the tongue pad, and hyolingual musculature in chameleons. Dissections and histological sections indicated the presence of five distinctly individualized pairs of intrinsic tongue muscles. An analysis of the histochemical properties of the system revealed only two fiber types in the hyolingual muscles: fast glycolytic and fast oxidative glycolytic fibers. In accordance with this observation, motor-endplate staining showed that all endplates are of the en-plaque type. All muscles show relatively short fibers and large numbers of motor endplates, indicating a large potential for fine muscular control. The connective tissue sheet surrounding the entoglossal process contains elastin fibers at its periphery, allowing for elastic recoil of the hyolingual system after prey capture. The connective tissue sheets surrounding the m. accelerator and m. hyoglossus were examined under polarized light. The collagen fibers in the accelerator epimysium are configured in a crossed helical array that will facilitate limited muscle elongation. The microstructure of the tongue pad as revealed by SEM showed decreased adhesive properties, indicating a change in the prey prehension mechanics in chameleons compared to agamid or iguanid lizards. These findings provide the basis for further experimental analysis of the hyolingual system. © 2001 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of veratrine have been investigated in mammalian, amphibian, and crustacean muscle, but not in fish. In this work, the action of veratrine was studied in the lateral muscle of the freshwater teleost Oreochromis niloticus after intramuscular injection. Histoenzymological typing and electron microscopy of muscle fibers before and 15, 30, and 60 min after veratrine injection (10 ng/kg fish) were used to indirectly assess the morphological changes and the oxidative and m-ATPase activities. In some cases, muscles were pretreated with tetrodotoxin to determine whether the ultrastructural changes were the result of Na+ channel activation by veratrine. Veratrine altered the metabolism of fibers mainly after 30 min. Oxidative fibers showed decreased NADH-TR activity, whereas that of glycolytic and oxidative-glycolytic type fibers increased. There was no change in the m-ATPase activity of the three fiber types, except at 60 min postveratrine, when a novel fiber type, which showed no reversal after acidic and alkaline preincubations, appeared. Ultrastructural damage involved sarcomeres, myofibrils, and mitochondria, but the T-tubules remained intact. Pretreatment with tetrodotoxin (1 ng/ml) prevented the ultrastructural changes caused by veratrine. These results show that in fish skeletal muscle veratrine produces some effects that are not seen in mammalian muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of the anterior and posterior regions of the masseter and temporal muscles and of the anterior belly of the digastric muscle of 4 adult male tufted capuchin monkeys (Cebus apella) were removed and stained with HE and submitted to the m-ATPase reaction (with alkaline and acid preincubation) and to the NADH-TR and SDH reactions. The results of the histoenzymologic reactions were similar, except for acid reversal which did not occur in fibers of the fast glycolytic (FG) type in the mandibular locomotor muscles. FG fibers had a larger area and were more frequent in all regions studied. No significant differences in frequency or area of each fiber type were detected, considering the anterior and posterior regions of the masseter and temporal muscles. The frequency of fibers of the fast oxidative glycolytic (FOG) and slow oxidative (SO) types and of FOG area differed significantly between the anterior belly of the digastric muscle and the mandibular locomotor muscle. The predominance of fast twitch (FG and FOG) fibers and the multipenniform and bipenniform internal architecture of the masseter and temporal muscles, respectively, are characteristics that permit the powerful bite typical of tufted capuchin monkeys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the presence and the localization of acid phosphatase and ATPase in the salivary glands of Rhipicephalus (Boophilus) microplus female ticks during feeding. Semi-engorged females showed a larger amount of acid phosphatase compared to those at beginning of feeding, localized mainly in the apical portion of the secretory cells, and in the basal labyrinth of the interstitial cells. Ultrastructural observations also demonstrated its presence in secretion granules and inside some nuclei of secretory cells at beginning of feeding. Acid phosphatase in a free form probably has a hemolymph and/or ribosomal origin and participates in salivary gland secretion control. ATPase was detected in basal membrane of all types of acini and/or in the cytoplasm of the secretory cells at both feeding stages. The enzyme activities found strongly suggests that cell death by apoptosis occurs during the degenerative process. © 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study reports, for the first time, that the recombinant hsp65 from Mycobacterium leprae (chaperonin 2) displays a proteolytic activity toward oligopeptides. The M. leprae hsp65 proteolytic activity revealed a trypsin-like specificity toward quenched fluorescence peptides derived from dynorphins. When other peptide substrates were used (β-endorphin, neurotensin, and angiotensin I), the predominant peptide bond cleavages also involved basic amino acids in P 1, although, to a minor extent, the hydrolysis involving hydrophobic and neutral amino acids (G and F) was also observed. The amino acid sequence alignment of the M. leprae hsp65 with Escherichia coli Hs1VU protease suggested two putative threonine catalytic groups, one in the N-domain (T 136, K 168, and Y 264) and the other in the C-domain (T 375, K 409, and S 502). Mutagenesis studies showed that the replacement of K 409 by A caused a complete loss of the proteolytic activity, whereas the mutation of K 168 to A resulted in a 25% loss. These results strongly suggest that the amino acid residues T 375, K 409, and S 502 at the C-domain form the catalytic group that carries out the main proteolytic activity of the M. leprae hsp65. The possible pathophysiological implications of the proteolytic activity of the M. leprae hsp65 are now under investigation in our laboratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The extraocular muscle fibres of the South-American opossum were determined according to their metabolic profiles using NADH-diaforase, and myofibrilar ATPase after pre-incubation in both acid (pH 4.3) and alkaline (pH 10.4) media. Three muscles were selected to study the arrangement of the fibres (obliquous dorsalis, rectus dorsalis and rectus lateralis muscles). It was demonstrated that they are organized in two layers: the orbital layer composed by small diameter fibres and the global layer with three-times thicker fibres than the former. The global layer has three fibre types: white, red and intermediate; while the orbital layer presents two fibre types, which react differently to the ATPase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the potency and maximal responses (E-max) to the adenosine receptor agonists N-6-cyclopentyladenosine (CPA), N-ethylcarboxamidoadenosine (NECA) and N-6-(3-iodobenzyl)-5'-N-methylcarbaxamidoadenosine (IB-MECA) in right atria from trained rats. We also investigated the interaction between the training bradycardia and the sensitivity of the chronotropic response mediated by adenosine receptor stimulation.2. Animals were submitted to run training for 60 min, 5 days a week, over a period of 8 weeks. Mean blood pressure and heart rate were measured in conscious animals. Right atria were isolated and concentration-response curves to CPA, NECA and IB-MECA were obtained.3. A reduction in heart rate was found in trained rats, indicating that the training programme was successful in inducing physical conditioning. The three adenosine receptor agonists induced a concentration-dependent negative chronotropic response. The rank order of potency and E-max for the three adenosine receptor agonists was CPA>NECA>IB-MECA.4. Dynamic exercise for 8 weeks did not alter the E a, for CPA, NECA and IB-MECA. Similarly, the potencies of CPA and NECA were not affected by run training, whereas the potency of IB-MECA was reduced (6.10+/-0.09 vs 5.66+/-0.10 for sedentary and trained groups, respectively).5. In conclusion, run training for 8 weeks induced a desensitization of the chronotropic response to IB-MECA without changing the potency of CPA and NECA. These findings exclude the participation of adenosine receptors in the training bradycardia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied here the effect of a wide range of adenosine concentration and time of preincubation, on the histamine release induced in the guinea pig mast cells by different stimulus. Adenosine (10(-5)-10(-3) M) potentiated the histamine release induced by antigen in the guinea pig heart (isolated and dispersed tissue) and lung mast cells but not induced by ionophore A23197. The potentiation caused by adenosine (10(-4) M) was maximum after 1-3 min of preincubation and is probably an extracellular effect since it was not avoided by dipyridamol (3 x 10(-7)-10(-6) M) that inhibit the uptake of adenosine. Similar potentiation was also produced by the adenosine mimetic 2-chloroadenosine (10(-5) M) and both effects were inhibited by 8-phenyltheophylline indicating an effect on the type A receptors. It is suggested that the adenosine potentiation may not be related to changes on the cyclic AMP levels. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactate dehydrogenase was partially purified from the epaxial muscle of Piaractus mesopotamicus (pacu) and its hybrid Piaractus mesopotamicus x Colossoma macropomus (tambacu). This preparation was used for kinetic studies carried out at pH 6.0 and 7.5. It was also used for the study of the inhibition properties of adenosine nucleotides = ATP, ADP, AMP =, divalent ions Ni2+, Cu2+, Co2+ and the anions oxamate and oxalate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A(2A) receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [H-3]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A(2A) receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (03 mM)-induced transmitter release facilitation, because its effect was prevented by the A(2A) receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M-1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M-2 and Al receptors blocked by methoctramine (0.1 mu M) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A(2A) receptors by endogenous adenosine leading to synaptic vesicle redistribution. (C) 2014 Elsevier Ltd. All rights reserved.