33 resultados para Adaptive response
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Although there are reports concerning a vascular adaptive response to stress in males, this is not yet defined in females. The aim of this study was to delineate functional gender differences in the rat vascular adaptive response to stress and to determine the ability of sex hormones to modulate the stress-induced vascular adaptive response. Responses to noradrenaline were evaluated in aortas, with and without endothelium, from intact, gonadectomized and gonadectomized-hormone-replaced males and females submitted or not to stress (2-h immobilization). Reactivity of the aorta of stressed and non-stressed intact males and females (n = 6-14 per group) was also examined in the presence of L-NAME or indomethacin. Stress decreased and gonadectomy increased maximal responses to noradrenaline in aortas with intact endothelium from both genders. Stress also reduced noradrenaline potency in males. In females, but not males, stress decreased the gonadectomy-induced noradrenaline hyper-reactivity to near that of intact non-stressed rats. Hormone replacement restored the gonadectomy-induced impaired vascular adaptive response to stress. L-NAME, but not indomethacin, abolished the stress-induced decrease in aorta reactivity of males and females. None of the procedures altered reactivity of aortas denuded of endothelium. Conclusion: Stress-induced vascular adaptive responses show gender differences. The magnitude of the adaptive response is dependent on testicular hormones and involves endothelial nitric oxide-system hyperactivity.
Resumo:
Stress induced a decrease in the reactivity of the aorta to noradrenaline (NA), as a consequence of an endothelial nitric oxide (NO) system hyperactivity. The main characteristic of the stress response is activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic adrenomedullary (SA) system. The participation of the HPA axis and SA system in the decreased reactivity to NA in the aorta of rats exposed to 4-h immobilization was investigated. Concentration-response relationships for NA were obtained in the aorta, with and without endothelium, isolated from normal and stressed rats, following these procedures: (1) in the absence and presence of L-NAME; (2) after adrenalectomy (ADX) or not, in the absence or presence of L-NAME; (3) ADX rats treated or not with corticosterone; (4) ADX associated with stress; and (5) treated or not with reserpine. The reactivity of aorta without endothelium was unaffected by the procedures. The reactivity of aorta with endothelium was decreased by either stress or ADX. This effect was reversed by both L-NAME and corticosterone. ADX did not potentiate the decrease in the aorta reactivity induced by stress. Reserpine did not change the reactivity of aorta with endothelium from normal rats, but prevented the decrease in reactivity induced by stress. It is concluded that the HPA axis participates in endothelium-dependent modulation of aorta reactivity in normal conditions and that thr SA system participates in hyperactivity of the endothelial NO-system induced by stress, which is responsible for the decreased aorta reactivity to NA. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Information about orthodontic movement of teeth with hypercementosis is scarce. As cementum deposition continues to occur, cementum is expected to change the shape of the root and apex over time, but this has not yet been demonstrated. Nor has it ever been established whether it increases or decreases the prevalence of root resorption during orthodontic treatment. The unique biological function of the interconnected network of cementocytes may play a role in orthodontic movement and its associated root resorptions, but no research has ever been conducted on the topic. Unlike cementum thickness and hypercementosis, root and apex shape has not yet been related to patient age. A study of the precise difference between increased cementum thickness and hypercementosis is warranted. Hypercementosis refers to excessive cementum formation above and beyond the extent necessary to fulfill its normal functions, resulting in abnormal thickening with macroscopic changes in the tooth root, which may require the delivery of forces that are different from conventional mechanics in their intensity, direction and distribution. What are the unique features and specificities involved in moving teeth that present with hypercementosis? Bodily movements would be expected to occur, since inclination might prove difficult to achieve, but would the root resorption index be higher or lower?
Resumo:
Stress-induced vascular adaptive response in SHR was investigated, focusing on the endothelium. Noradrenaline responses were studied in intact and denuded aortas from 6-week-old (prehypertensive) and 14-week-old (hypertensive) SHR and age-matched Wistar rats submitted or not to acute stress (20-min swimming and I-h immobilization 25 min apart), preceded or not by chronic stress (2 sessions 2 days apart of 1-h day immobilization for 5-consecutive days). Stress did not alter the reactivity of denuded aorta. Moreover, no alteration in the EC50 values was observed after stress exposure. In intact aortas, acute stress-induced hyporeactivity to noradrenaline similar between strains at both age. Chronic stress potentiated this adaptive response in 6- and 14-week-old Wistar but not in 6-week-old SHR, and did not alter the reactivity of 14-week-old SHR. Maximum response (g) in intact aortas [6-week-old: Wistar 3.25 +/- 0.12, Wistar/acute 1.95 +/- 0.12*, Wistar/chronic 1.36 +/- 0.21*(+), SHR 1.75 +/- 0.11, SHR/acute 0.88 +/- 0.08*, SHR/chronic 0.85 +/- 0.05*; 14-week-old: Wistar 3.83 +/- 0.13, Wistar/acute 2.72 +/- 0.13*, Wistar/chronic 1.91 +/- 0.19*', SHR 4.03 +/- 0.17, SHR/acute 2.26 +/- 0.12*, SHR/chronic 4.10 +/- 0.23; inside the same strain: *P < 0.05 relate to non-stressed rat, (+)P < 0.05 related to acute stressed rat; n = 6-18]. Independent of age and strain, L-NAME and endothelium removal abolished the stress-induced aorta hyporeactivity. Conclusion: the vascular adaptive response to stress is impaired in SHR, independently of the hypertensive state. Moreover, this vascular adaptive response is characterized by endothelial nitric oxide-system hyperactivity in both strains. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
1. This experiment was carried out to evaluate the productive and physiological consequences of a slight but long term food restriction of male broiler chickens from 2 commercial strains.2. Cobb-500 and Ross chickens were submitted to a 20% food restriction from 8 to 21 d of age. Strain, food programme and their interactive effects were analysed in terms of consequences upon performance, mortality, incidence of sudden death syndrome (SDS) and ascites syndrome (AS), index of right cardiac hypertrophy and plasma concentrations of hormones related to metabolism and growth (T-3, T-4, T-3:T-4 ratio, IGF-I and GH).3. Although some catch-up growth was observed by refeeding previously restricted birds after 22 d of rearing, food restriction decreased (P less than or equal to 0.05) body weight at market age (42 d) irrespective of the strain, but improved (P less than or equal to 0.05) food conversion.4. The incidence of mortality was not high in non-restricted birds but SDS and AS caused more than 50% of deaths. Hypertrophic cardiac index was observed in chickens of both strains after 4 weeks of age and was higher in ad libitum fed birds.5. During the period of food restriction, plasma T-3 and IGF-I concentrations decreased whereas plasma T-4 and GH concentrations increased compared to those of the age-matched ad libitum fed counterparts. During the subsequent ad libitum feeding period, few differences in circulating hormone concentrations were observed, except for the higher mean CH litres in previously food-restricted chickens at 35 d of age.6. These results indicate that even a non-severe food restriction negatively affects body weight of 42-d-old male broilers but these are benefits with improved food efficiency and diminished mortality from metabolic disturbances. The hormone results suggest that the degree of food restriction applied was not severe because there was a very fast adaptive response with small and transient alterations in T-3, T-4 and GH plasma concentrations during the period of compensatory growth.
Resumo:
We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diethylpropion (DEP) is an amphetamine-like compound used as a coadjutant in the treatment of obesity and which presents toxicological importance as a drug of abuse. This drug causes important behavioral and cardiovascular complications; however, the vascular and behavioral alterations during DEP treatment and withdrawal, have not been determined. We evaluated the effects of DEP treatment and withdrawal on the rat aorta reactivity to noradrenaline, focusing on the endothelium, and the rat behavior during DEP treatment and withdrawal. DEP treatment caused a hyporreactivity to noradrenaline in aorta, reversible after 2 days of withdrawal and abolished by both the endothelium removal and the presence of L-NAME, but not by the presence of indomethacin. Furthermore, DEP treatment increased the general activity of rats. Contrarily, DEP withdrawal caused a decrease in the locomotor activity and an increase in grooming behavior, on the 2nd and 7th days after the interruption of the treatment, respectively. DEP treatment also caused an adaptive vascular response to noradrenaline that seems to be dependent on the increase in the endothelial nitric oxide system activity, but independent of prostaglandins synthesis. The data evidenced chronological differences in the adaptive responses of the vascular and central nervous systems induced by DEP treatment. Finally, a reversion of the adaptive response to DEP was observed in the vascular system during withdrawal, whereas a neuroadaptive process was still present in the central nervous system post-DEP. These findings advance on the understanding of the vascular and behavioral pathophysiological processes involved in the therapeutic and abusive uses of DEP. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
Insulin is an important regulator of the ubiquitin-proteasome system (UPS) and of lysosomal proteolysis in cardiac muscle. However, the role of insulin in the regulation of the muscle atrophy-related Ub-ligases atrogin-1 and MuRF1 as well as in autophagy, a major adaptive response to nutritional stress, in the heart has not been characterized. We report here that acute insulin deficiency in the cardiac muscle of rats induced by streptozotocin increased the expression of atrogin-1 and MuRF1 as well as LC3 and Gabarapl1, 2 autophagy-related genes. These effects were associated with decreased phosphorylation levels of Akt and its downstream target Foxo3a; this phenomenon is a well-known effect that permits the maintenance of Foxo in the nucleus to activate protein degradation by proteasomal and autophagic processes. The administration of insulin increased Akt and Foxo3a phosphorylation and suppressed the diabetes-induced expression of Ub-ligases and autophagy-related genes. In cultured neonatal rat cardiomyocytes, nutritional stress induced by serum/glucose deprivation strongly increased the expression of Ub-ligases and autophagy-related genes; this effect was inhibited by insulin. Furthermore, the addition of insulin in vitro prevented the decrease in Akt/Foxo signaling induced by nutritional stress. These findings demonstrate that insulin suppresses atrophy- and autophagy-related genes in heart tissue and cardiomyocytes, most likely through the phosphorylation of Akt and the inactivation of Foxo3a. © Georg Thieme Verlag KG.
Resumo:
The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60 and 180 s-1). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180 s-1, or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180 s-1 was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180 s-1 (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)