110 resultados para Adaptive Equalization. Neural Networks. Optic Systems. Neural Equalizer

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for high reliability and environmental concerns are making the underground networks the most appropriate choice of energy distribution. However, like any other system, underground distribution systems are not free of failures. In this context, this work presents an approach to study underground systems using computational tools by integrating the software PSCAD/EMTDC with artificial neural networks to assist fault location in power distribution systems. Targeted benefits include greater accuracy and reduced repair time. The results presented here shows the feasibility of the proposed approach. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents models that can be used in the design of microstrip antennas for mobile communications. The antennas can be triangular or rectangular. The presented models are compared with deterministic and empirical models based on artificial neural networks (ANN) presented in the literature. The models are based on Perceptron Multilayer (PML) and Radial Basis Function (RBF) ANN. RBF based models presented the best results. Also, the models can be embedded in CAD systems, in order to design microstrip antennas for mobile communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages offered by the electronic component light emitting diode ( LED) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, a generalized passivity concept for linear multivariable systems was obtained which allows circumventing the restrictiveness of the usual passivity concept. The latter is associated with the classical SPR (Strictly Positive Real) condition whereas the new concept of passivity is associated with the so called WSPR condition and its advantage in multivariable systems is that it does not require a restrictive symmetry condition of SPR systems. As a result, it allows the design of multivariable adaptive control that, unlike some existing factorization approaches, does not imply in additional overparameterization of the adaptive controller. In this paper, we complete a previously established WSPR sufficient condition and prove that it is also necessary. We also propose some methods of passification by either premultiplying the system output tracking error vector or the system input vector by an adequate passifying matrix multiplier, so that the resulting input/output transfer function becomes WSPR. The efficiency of our proposals are illustrated by simulation utilizing a well known robotics adaptive visual servoing problem. © 2011 IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of genes essential for survival is important for the understanding of the minimal requirements for cellular life and for drug design. As experimental studies with the purpose of building a catalog of essential genes for a given organism are time-consuming and laborious, a computational approach which could predict gene essentiality with high accuracy would be of great value. We present here a novel computational approach, called NTPGE (Network Topology-based Prediction of Gene Essentiality), that relies on the network topology features of a gene to estimate its essentiality. The first step of NTPGE is to construct the integrated molecular network for a given organism comprising protein physical, metabolic and transcriptional regulation interactions. The second step consists in training a decision-tree-based machine-learning algorithm on known essential and non-essential genes of the organism of interest, considering as learning attributes the network topology information for each of these genes. Finally, the decision-tree classifier generated is applied to the set of genes of this organism to estimate essentiality for each gene. We applied the NTPGE approach for discovering the essential genes in Escherichia coli and then assessed its performance. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a mathematical model and a methodology to solve a transmission network expansion planning problem considering open access. The methodology finds the optimal transmission network expansion plan that allows the power system to operate adequately in an environment with multiples generation scenarios. The model presented is solved using a specialized genetic algorithm. The methodology is tested in a system from the literature. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of establishing stabilizing state-dependent switching laws in DC-DC converters operating at continuous conduction mode (CCM) and comparing their performance indexes. Firstly, the nature of the problem is defined, that is, the study of switched affine systems, which may not share a common equilibrium point. The concept of stability is, therefore, broadened. Then, the central theorem is proposed, from which a family of switching laws can be derived, namely the minimum law and the hold state law. Some of these are proved to stabilize the basic DC-DC converters and then, their performances are compared to another law, from a previous work, by simulation, where a great reduction in overshoot is obtained. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The application process of fluid fertilizers through variable rates implemented by classical techniques with feedback and conventional equipments can be inefficient or unstable. This paper proposes an open-loop control system based on artificial neural network of the type multilayer perceptron for the identification and control of the fertilizer flow rate. The network training is made by the algorithm of Levenberg-Marquardt with training data obtained from measurements. Preliminary results indicate a fast, stable and low cost control system for precision fanning. Copyright (C) 2000 IFAC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate identification of features of dynamical grounding systems are extremely important to define the operational safety and proper functioning of electric power systems. Several experimental tests and theoretical investigations have been carried out to obtain characteristics and parameters associated with the technique of grounding. The grounding system involves a lot of non-linear parameters. This paper describes a novel approach for mapping characteristics of dynamical grounding systems using artificial neural networks. The network acts as identifier of structural features of the grounding processes. So that output parameters can be estimated and generalized from an input parameter set. The results obtained by the network are compared with other approaches also used to model grounding systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a methodology to analyze transient stability (first oscillation) of electric energy systems, using a neural network based on ART architecture (adaptive resonance theory), named fuzzy ART-ARTMAP neural network for real time applications. The security margin is used as a stability analysis criterion, considering three-phase short circuit faults with a transmission line outage. The neural network operation consists of two fundamental phases: the training and the analysis. The training phase needs a great quantity of processing for the realization, while the analysis phase is effectuated almost without computation effort. This is, therefore the principal purpose to use neural networks for solving complex problems that need fast solutions, as the applications in real time. The ART neural networks have as primordial characteristics the plasticity and the stability, which are essential qualities to the training execution and to an efficient analysis. The fuzzy ART-ARTMAP neural network is proposed seeking a superior performance, in terms of precision and speed, when compared to conventional ARTMAP, and much more when compared to the neural networks that use the training by backpropagation algorithm, which is a benchmark in neural network area. (c) 2005 Elsevier B.V. All rights reserved.