2 resultados para Abandoned Mined Lands Reclamation Council (Ill.)
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
As part of a larger study evaluating several silvicultural techniques for restoring tropical moist forests on abandoned agricultural lands in southeastern Brazil, direct seeding with five early-successional Atlantic forest species was tested at three degraded sites, characterized by different soil types and land-use histories, within the Environmental Protection Area at Botucatu, SP. The species used in this study were Chorisia speciosa, Croton floribundus, Enterolobium contorstisiliquum, Mimosa scabrella, and Schizolobium parahyba. Scarified seeds of each of these species were sown in prepared seed spots in replicated, 0.25 ha mixed-species plots at an initial espacement of 1 m x 1 m at each site. of the five species planted, only two, Enterolobium and Schizolobium, showed good seed germination, seedling survival, and early growth rates, averaging 4.1-4.6 cm stem diameter and 1.5-1.7 m height growth during the first 2 years after sowing. These two species constituted 88-100% of the total stand density, which ranged from 1050 to 1790 stems ha(-1) at 2 years. Despite the poor performance of the other species tested, we observed that the natural regeneration of native forest species originating from remnant forests in the general vicinity of our study sites was significantly greater within the direct-seeded plots than in unplanted control plots that were protected from fire and other disturbances. Published by Elsevier B.V. B.V.
Resumo:
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0-10, 10-20, and 20-40cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16-0.10mgkg(-1)) and Zn (0.10-0.02mgkg(-1)) and exhibited rather low concentrations of extractable iron (Fe; 5.24-1.47mgkg(-1)) and manganese (Mn; 3.21-0.77mgkg(-1)). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.