61 resultados para ATOMS LI

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent theoretical and experimental activities in positronium (Ps) scattering by atoms and molecules are reviewed with special emphasis at low energies. We critically compare the results of different groups - theoretical and experimental. The theoretical approaches considered include the R-matrix and close-coupling methods applied to Ps-H, Ps-He and Ps-Li scattering, and a coupled-channel approach with a nonlocal model potential for Ps scattering by H, He, H-2, Ne, Ar, Li, Na, K, Rb, Cs and Ps and for pickoff quenching in Ps-He scattering. Results for scattering lengths, partial. total and differential cross-sections as well as resonance and binding energies in different systems are discussed. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scale-independent approach, valid for weakly bound three-body systems, is used to analyze the existence of excited Thomas-Efimov states in molecular systems with three atoms: a helium dimer together with isotopes of lithium (Li-6 and Li-7) and sodium (Na-23). With the present study and the available data, we can clearly predict that the He-4(2)-Li-7 system supports an excited state with binding energy close to 2.31 mK. (C) 2000 American Institute of Physics. [S0021-9606(00)30442-1].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irreversible photoexpansion effect has been observed in amorphous Ga10Ge2S65 glasses when its surface was exposed to light with energy greater than the band gap, 3.52 eV. A volume change of about 5% was reached in bulk samples by controlling illumination time and the laser power density. To understand the atomic scale processes of the photoexpansion effect, extended X-ray absorption fine structure (EXAFS) spectroscopy has been used as a local probe of the germanium environment in the glass samples before and after illumination. Modifications are observed in the average coordination shell around Ge atoms in the illuminated sample compared to the non-illuminated one. For the non-illuminated sample, the Ge coordination shell is described by a distorted tetrahedron of sulfur atoms at around 2.20 Angstrom. After illumination, the EXAFS signal can be explained by introducing an additional contribution to this average environment. Based on an analysis of the EXAFS data we proposed a two-shell model of 0.5 oxygen atoms at 2.01 Angstrom and 3.6 sulfur atoms at a 2.20 Angstrom. The existence of Ge-O bonds in the glass after illumination was confirmed by infrared measurements. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Borate glasses present an absorption coefficient very close to that of human tissue. This fact makes some borates ideal materials to develop medical and environmental dosimeters. Glass compositions with calcium tetraborate (CaB4O7) and calcium metaborate (CaB2O4), such as the xCaB(4)O(7) - (100-x)CaB2O4 System (0 <= x <= 100 wt%) were obtained by the traditional melting/quenching method. A phenomenon widely known as the 'boron anomaly' was observed in our thermal analysis measurements, as indicated by the increase of T, and the appearance of a maximum value in the composition with 40 wt% of CaB2O4. The Dy doped and Li co-doped 80CaB(4)O(7)-20CaB(2)O(4) (Wt%) glass samples were studied by the thermoluminescence technique. The addition of Dy improved the signal sensitivity in about three times with respect to the undoped glass sample. The addition of Li as a co-dopant in this glass caused a shift to a lower temperature of about 20 degrees C in the main glow peak. The structural analysis of the 80CaB(4)O(7)-20CaB(2)O(4) (wt%) undoped and doped samples were studied through infrared absorption. We have noted an increase in the coordination number of the boron atoms from 3 to 4, i.e., the conversion of the BO3 triangular structural units into BO4 tetrahedra. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermoluminescence (TL) response of Dy and Li doped 20CaB(4)O(7)-80CaB(2)O(4) (Wt%) glass-ceramic irradiated with ultraviolet (UV) radiation was studied. In order to act as TL activator ions, the Dy and Li ions were included in the matrix during the melting process to increase its TL efficiency. A single crystalline CaB2O4 phase was present in the glass-ceramic as determined by X-ray diffraction (XRD). The glass-ceramic 20CaB(4)O(7)-80CaB(2)O(4):Dy,Li wt% (named 20CBO7:Dy,Li) is a newly prepared TL material. Its thermoluminescent dosimetric characteristics have shown a linear response under UV radiation exposure and a good TL signal reproducibility, thus proving to be a promising material for using as an ultraviolet radiation dosimeter. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider formation of dissipationless shock waves in Bose-Einstein condensates with repulsive interaction between atoms. It is shown that for big enough initial inhomogeneity of density, interplay of nonlinear and dispersion effects leads to wave breaking phenomenon followed by generation of a train of dark solitons. Analytical theory is confirmed by numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of an attractive Bose-Einstein condensate on a joint one-dimensional optical lattice and an axially symmetrical harmonic trap is studied using the numerical solution of the time-dependent mean-field Gross-Pitaevskii equation and the critical number of atoms for a stable condensate is calculated. We also calculate this critical number of atoms in a double-well potential which is always greater than that in an axially symmetrical harmonic trap. The critical number of atoms in an optical trap can be made smaller or larger than the corresponding number in the absence of the optical trap by moving a node of the optical lattice potential in the axial direction of the harmonic trap. This variation of the critical number of atoms can be observed experimentally and compared with the present calculations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a numerical scheme for solving the time-independent nonlinear Gross-Pitaevskii equation in two dimensions describing the Bose-Einstein condensate of trapped interacting neutral atoms at zero temperature. The trap potential is taken to be of the harmonic-oscillator type and the interaction both attractive and repulsive. The Gross-Pitaevskii equation is numerically integrated consistent with the correct boundary conditions at the origin and in the asymptotic region. Rapid convergence is obtained in all cases studied. In the attractive case there is a limit Co the maximum number of atoms in the condensate. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scattering of positronium (Ps) from atoms (H, He, Ne, Ar), molecule (H(2)) and ion (He(+)) have been investigated using a coupled-channel (CC) formalism with a regularised non-local exchange potential. The advantage of using such a regularized exchange potential in the close-coupling formalism and the normalizability aspect of the solution at low energies with a minimum effective coupling are discussed. Results for the elastic and total scattering cross-sections, resonance and binding energies in Ps-H, and pick-off annihilation results in Ps-He are found to be in excellent agreement with measurements and variational predictions. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of the mean-field hydrodynamic model of a degenerate Fermi gas ( DFG), we study, by means of numerical methods and variational approximation ( VA), the formation of fundamental gap solitons ( FGSs) in a DFG ( or in a BCS superfluid generated by weak interaction between spin- up and spin- down fermions), which is trapped in a periodic optical- lattice ( OL) potential. An effectively one- dimensional ( 1D) con. guration is considered, assuming strong transverse confinement; in parallel, a proper 1D model of the DFG ( which amounts to the known quintic equation for the Tonks- Girardeau gas in the OL) is considered too. The FGSs found in the first two bandgaps of the OL- induced spectrum ( unless they are very close to edges of the gaps) feature a ( tightly bound) shape, being essentially confined to a single cell of the OL. In the second bandgap, we also find antisymmetric tightly bound subfundamental solitons ( SFSs), with zero at the midpoint. The SFSs are also confined to a single cell of the OL, but, unlike the FGSs, they are unstable. The predicted solitons, consisting of similar to 10(4) - 10(5) atoms, can be created by available experimental techniques in the DFG of Li-6 atoms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of stability and collapse of a trapped atomic Bose-Einstein condensate (BEC) coupled to a molecular one is studied using the time-dependent Gross-Pitaevskii (GP) equation including a nonlinear interaction term which can transform two atoms into a molecule and vice versa. We find an interesting oscillation of the number of atoms and molecules for a BEC of fixed mass. This oscillation is a consequence of continuous transformation in the condensate of two atoms into a molecule and vice versa. For the study of collapse an absorptive contact interaction and an imaginary quartic three-body recombination term are included in the GP equation. It is possible to have a collapse of one or both components when one or more of the nonlinear terms in the GP equation are attractive in nature, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that a scaling limit approach, previously applied in three-body low-energy nuclear physics, is realized for the first excited state of He-4 trimer. The present result suggests that such approach has a wider application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the Bose-Einstein condensation of an interacting gas with attractive interaction confined in a harmonic trap using a semiclassical two-fluid mean-field model. The condensed state is described by the converged numerical solution of the Gross-Pitaevskii equation. By solving the system of coupled equations of this model iteratively we obtain the converged results for the temperature dependencies of the condensate fraction, chemical potential, and internal energy for the Bose-Einstein condensate of Li-7 atoms. (C) 2000 Elsevier B.V. B.V. All rights reserved.