75 resultados para AC motors
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].
Resumo:
Pós-graduação em Engenharia Elétrica - FEB
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
This paper is based on the development and experimental analysis of a DCM Boost interleaved converter suitable for application in traction systems of electrical vehicles pulled by electrical motors (Trolleybus), which are powered by urban DC or AC distribution networks. This front-end structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The architecture of proposed converter is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode. Furthermore, the converter can operate as AC-DC converter, or as DC-DC converter providing the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards. The digital controller has been implemented using a low cost FPGA and developed totally using a hardware description language VHDL and fixed point arithmetic. Thus, two control strategies are evaluated considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, the regular PWM modulation and a current correction PWM modulation. In order to verify the feasibility and performance of the proposed system, experimental results from a 15 kW low power scale prototype are presented, operating in DC and AC conditions.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
This paper describes the design and development of a high input power-factor (HPF) AC to AC converter for naval applications using Permanent Magnet Generator (PMG). The proposed converter comprises an isolated three-phase uncontrolled multipulse rectification stage directly connected to a single-phase inverter stage, without the use of DC to DC intermediary stage, resulting in more simplicity for the overall circuitry, assuring robustness, reliability and reduced costs. Furthermore, the multipulse rectifier stage is capable to provide high power factor and input currents with low total harmonic distortion (THD). The output voltage of the PMG varies from 260V rms (220 Hz) to 380V rms (360 Hz), depending on load conditions. The output single-phase inverter stage was designed to operate with wide range of DC bus voltage, maintaining 120V rms, 60 Hz output. Measured total harmonic distortion for the AC output voltage represents less than 2%, at 3.6kW nominal linear load. © 2010 IEEE.
Resumo:
This work proposes a new three-phase multipulse rectifier based on the delta autotransformer connection with DC-DC Boost stages and constant hysteresis control which has the objective of providing a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents 0.99 power factor, 6% harmonic distortions in the currents from the mains and enhanced magnetic core utilization, which results in low weight and volume for the overall converter. The proposed control technique uses the simple constant hysteresis concept, thus leading to a low-cost but effective and reliable strategy. © 2011 IEEE.
Resumo:
Drug delivery systems based on natural polysaccharides, such as chitosan (CS) and pectin (PC), rather than on synthetic polymers, have been widely studied. Some reasons for that are low toxicity and costs and high biodegradability of the formers. A multiparticulate system based on CS and PC was developed in our laboratories, including the addition of an enteric polymer, cellulose acetate phtalate (CAP). Such improvement promoted stronger gastric and enteric resistances, as assessed in vitro, making the systems more selective to enzymatic degradation in the colon. Although in vitro dissolution tests can simulate some properties concerning the gastrointestinal transit (GT), collaborating to characterize the systems behavior in the biological fluids, frequently they do not result in satisfactory in vitro/in vivo correlations. The objective of this work was to follow in vivo the GT of the particles developed by means of AC biosusceptometry (ACB), a non-invasive and of low cost methodology. The particles containing ferrite in powder form were prepared by complex coacervation using an ideal 3:1:1 mass ratio for PC:CS:CAP. The magnetic particles were administered to healthy volunteers by oral route. The GT was monitored by using multi-sensor ACB system and the signal acquisition was performed every IS min until the colonic region was reached. By means of ACB technique, it was possible to acquiring images generated by the magnetic particles within the whole gastrointestinal tract including the colonic region. Variable particles transit times were observed among the volunteers, but without interference on the mapping of the particles until the colonic region. The particles were able to produce magnetic field strong enough to generate signals adequate for mapping the particles. The results suggest that integral particles reached the colon, after they resisted against gastric and enteric media. Studies associating transit time and in vivo drug release are in development in order to confirm the efficiency of the systems.
Resumo:
Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Condition monitoring is used to increase machinery availability and machinery performance, reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient real time vibration measurement and analysis instruments is capable of providing warning and predicting faults at early stages. In this paper, a new methodology for the implementation of vibration measurement and analysis instruments in real time based on circuit architecture mapped from a MATLAB/Simulink model is presented. In this study, signal processing applications such as FIR filters and fast Fourier transform are treated as systems, which are implemented in hardware using a system generator toolbox, which translates a Simulink model in a hardware description language - HDL for FPGA implementations.
Resumo:
The capacitor-commutated converter (CCC) has frequently been used in the conception of HVDC systems connected to busbars with low short circuit level. This alternative arrangement, in substitution to the conventional ones, guarantees less sensitive operational conditions to problems related with the commutation failure in the inverters besides supplying part of the reactive energy to be compensated. Studies related with its performance in steady and transient states have been presented in several works, however its behavior as harmonic source is still little explored. This work presents preliminary studies focusing the generation of characteristic harmonics by this type of converter. Subjects related with the amplification of the harmonic magnitudes are investigated and compared considering similar arrangements of conventional static converters (LCC) and CCC schemes. It is also analyzed the harmonic generation on the dc side of the installation and its influence on the ac side harmonics. The results are obtained from simulations in the time domain in PSpice environment and they clearly illustrate the operational differences between the L CC and the CCC schemes with regard to characteristic harmonic generation.
Resumo:
This note clarifies the design of proportional derivative (PD) controllers for the magnetic levitation systems of micro PM motors proposed in the above paper. It is shown that the PD controllers cannot stabilize the described levited micro motors because it is necessary to use other values of parameters for these controllers. We present necessary and sufficient conditions for the stability of the controlled systems described in the paper.
Resumo:
A combinatorial mathematical model in tandem with a metaheuristic technique for solving transmission network expansion planning (TNEP) using an AC model associated with reactive power planning (RPP) is presented in this paper. AC-TNEP is handled through a prior DC model while additional lines as well as VAr-plants are used as reinforcements to cope with real network requirements. The solution of the reinforcement stage can be obtained by assuming all reactive demands are supplied locally to achieve a solution for AC-TNEP and by neglecting the local reactive sources, a reactive power planning (RPP) will be managed to find the minimum required reactive power sources. Binary GA as well as a real genetic algorithm (RCA) are employed as metaheuristic optimization techniques for solving this combinatorial TNEP as well as the RPP problem. High quality results related with lower investment costs through case studies on test systems show the usefulness of the proposal when working directly with the AC model in transmission network expansion planning, instead of relaxed models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The AC electric field and temperature dependences of the dielectric permittivity for strontium barium niobate (Sr(0.75)Ba(0.25)Nb(2)O(6)) relaxor ferroelectric thin films have been investigated. The results indicate the existence of a true mesoscopic structure evidenced by the nonlinear dielectric response of these films, which is similar to those observed for bulk relaxor ferroelectrics. A tendency for a temperature dependent crossover from a linear to a quadratic behaviour of the dielectric nonlinearity was observed, indicating an evolution from paraelectric to glass-like behaviour on cooling the samples towards the freezing temperature transition.