12 resultados para 3D localization
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
The biomagnetic techniques use different magnetic field detectors to measure parameters of the human physiology. Those techniques present the advantage of being noninvasive and radiation free. Among them we can show up the Superconducting Quantum Interference Device (SQUID), the Current Alternate Biosusceptometry (ACB) and, more recently, the employment of anisotropic magnetoresistive sensors. Those magnetic sensors have a low cost and good sensitivity to measure different physiological parameters using magnetic markers. The biomagnetic techniques have being used successfully through study on the characteristics of the gastrointestinal tract. Recent research, the magnetoresistors were used to evaluate the transit time and localization of magnetic sources in different parts of the gastrointestinal tract. The objective of this work is the characterization, with in vitro tests, of a biomagnetic instrumentation using two 3-axis magnetoresistors arranged in a gradiometric coplanar setup to evaluate esophageal transit time, analyze and compare the results of experimental signals and the magnetic theory, as well as evaluate the instrumentation gain with use of tri-axial sensor front to the mono-axial sensor. The instrumentation is composed by two three-axis sensing magnetometers, precision power supply and amplifier electronic circuits. The sensors fixed in a coplanar setup were separate by distance of 18 cm. The sensitivity tests had been carried through using a cylindrical magnet (ø = 4 mm and h = 4 mm) of neodymium-iron-boron (grid 35). The tests were done moving the permanent magnet on the sensors parallel axis, simulating the food transit in... (Complete abstract click electronic access below)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
fit the context of normalized variable formulation (NVF) of Leonard and total variation diminishing (TVD) constraints of Harten. this paper presents an extension of it previous work by the authors for solving unsteady incompressible flow problems. The main contributions of the paper are threefold. First, it presents the results of the development and implementation of a bounded high order upwind adaptative QUICKEST scheme in the 3D robust code (Freeflow), for the numerical solution of the full incompressible Navier-Stokes equations. Second, it reports numerical simulation results for 1D hock tube problem, 2D impinging jet and 2D/3D broken clam flows. Furthermore, these results are compared with existing analytical and experimental data. and third, it presents the application of the numerical method for solving 3D free surface flow problems. (C) 2007 IMACS. Published by Elsevier B.V. All rights reserved,
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to evaluate the tendency of displacement of the supporting structures of the distal extension removable partial denture (DERPD) associated to the implant with different inclinations of alveolar ridge and implant localizations through a two-dimensional finite-element method. Sixteen mandibular models were fabricated, presenting horizontal, distally descending, distally ascending, or descending-ascending ridges. All models presented the left canine and were rehabilitated with conventional DERPD or implant-retained prosthesis with the ERA system. The models were obtained by the AutoCAD software and transferred to the finite-element software ANSYS 9.0 for analysis. A force of 50 N was applied on the cusp tips of the teeth, with 5 points of loading of 10 N. The results were visualized by displacement maps. For all ridge inclinations, the assembly of the DERPD with distal plate retained by an anterior implant exhibited the lowest requisition of the supporting structures. The highest tendency of displacement occurred in the model with distally ascending ridge with incisal rest. It was concluded that the association of the implant decreased the displacement of the DERPD, and the anterior positioning of the implant associated to the DERPD with the distal plate preserved the supporting structures for all ridges.
Resumo:
Background: Suppressor of cytokine signaling 3 (SOCS3) is an inducible endogenous negative regulator of signal transduction and activator of transcription 3 (STAT3). Epigenetic silencing of SOCS3 has been shown in head and neck squamous cell carcinoma (HNSCC), which is associated with increased activation of STAT3. There is scarce information on the functional role of the reduction of SOCS3 expression and no information on altered subcellular localization of SOCS3 in HNSCC.Methodology/Principal Findings: We assessed endogenous SOCS3 expression in different HNSCC cell lines by RT-qPCR and western blot. Immunofluorescence and western blot were used to study the subcellular localization of endogenous SOCS3 induced by IL-6. Overexpression of SOCS3 by CMV-driven plasmids and siRNA-mediated inhibition of endogenous SOCS3 were used to verify the role of SOCS3 on tumor cell proliferation, viability, invasion and migration in vitro. In vivo relevance of SOCS3 expression in HNSCC was studied by quantitative immunohistochemistry of commercially-available tissue microarrays. Endogenous expression of SOCS3 was heterogeneous in four HNSCC cell lines and surprisingly preserved in most of these cell lines. Subcellular localization of endogenous SOCS3 in the HNSCC cell lines was predominantly nuclear as opposed to cytoplasmic in non-neoplasic epithelial cells. Overexpression of SOCS3 produced a relative increase of the protein in the cytoplasmic compartment and significantly inhibited proliferation, migration and invasion, whereas inhibition of endogenous nuclear SOCS3 did not affect these events. Analysis of tissue microarrays indicated that loss of SOCS3 is an early event in HNSCC and was correlated with tumor size and histological grade of dysplasia, but a considerable proportion of cases presented detectable expression of SOCS3.Conclusion: Our data support a role for SOCS3 as a tumor suppressor gene in HNSCC with relevance on proliferation and invasion processes and suggests that abnormal subcellular localization impairs SOCS3 function in HNSCC cells.