5 resultados para 3D CAD

em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Design - FAAC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the study was to evaluate the biaxial flexural strength of ceramics processed using the Cerec inLab system. The hypothesis was that the flexural strength would be influenced by the type of ceramic. Ten samples (ISO 6872) of each ceramic (N.=50/n.=10) were made using Cerec inLab (software Cerec 3D) (Ø:15 mm, thickness: 1.2 mm). Three silica-based ceramics (Vita Mark II [VM], ProCad [PC] and e-max CAD ECAD]) and two yttria-stabilized tetragonal-zirconia-polycrystalline ceramics (Y-TZP) (e-max ZirCad [ZrCAD] and Vita In-Ceram 2000 YZ Cubes [VYZ]) were tested. The samples were finished with wet silicone carbide papers up to 1200-grit and polished in a polishing machine with diamond paste (3 μm). The samples were then submitted to biaxial flexural strength testing in a universal testing machine (EMIC), 1 mm/min. The data (MPa) were analyzed using the Kruskal-Wallis and Dunn (5%) tests. Scanning electronic microscopy (SEM) was performed on a representative sample from each group. The values (median, mean±sd) obtained for the experimental groups were: VM (101.7, 102.1±13.65 MPa), PC (165.2, 160±34.7 MPa), ECAD (437.2, 416.1±50.1 MPa), ZrCAD (804.2, 800.8±64.47 MPa) and VYZ (792.7, 807±100.7 MPa). The type of ceramic influenced the flexural strength values (P=0.0001). The ceramics ECADa, e-max ZrCADa and VYZa presented similar flexural strength values which were significantly higher than the other groups (PCb and VM IIb), which were similar statistically between them (Dunn's test). The hypothesis was accepted. The polycrystalline ceramics (Y-TZP) should be material chosen for make FPDs because of their higher flexural strength values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of computer-assisted technologies such as CAD - Computed Aided Design, CAM - Computed Aided Manufacturing, CAE - Computed Aided Engineering and CNC - Computed Numerical Control, are priorities in engineering and product designers. However, the dimensional measurement between the virtual and the real product design requires research, and dissemination procedures among its users. This work aims to use these technologies, through analysis and measurement of a CNC milling machine, designed and assembled in the university. Through the use of 3D scanning, and analyzing images of the machined samples, and its original virtual files, it was possible to compare the sizes of these samples in counterposition to the original virtual dimensions, we can state that the distortions between the real and virtual, are within acceptable limits for this type of equipment. As a secondary objective, this work seeks to disseminate and make more accessible the use of these technologies.