8 resultados para 31
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
Context. Close encounters with (1) Ceres and (4) Vesta, the two most massive bodies in the main belt, are known to be a mechanism of dynamical mobility able to significantly alter proper elements of minor bodies, and they are the main source of dynamical mobility for medium-sized and large asteroids (D > 20 km, approximately). Recently, it has been shown that drift rates caused by close encounters with massive asteroids may change significantly on timescales of 30 Myr when different models (i.e., different numbers of massive asteroids) are considered. Aims. So far, not much attention has been given to the case of diffusion caused by the other most massive bodies in the main belt: (2) Pallas, (10) Hygiea, and (31) Euphrosyne, the third, fourth, and one of the most massive highly inclined asteroids in the main belt, respectively. Since (2) Pallas is a highly inclined object, relative velocities at encounter with other asteroids tend to be high and changes in proper elements are therefore relatively small. It was thus believed that the scattering effect caused by highly inclined objects in general should be small. Can diffusion by close encounters with these asteroids be a significant mechanism of long-term dynamical mobility? Methods. By performing simulations with symplectic integrators, we studied the problem of scattering caused by close encounters with (2) Pallas, (10) Hygiea, and (31) Euphrosyne when only the massive asteroids (and the eight planets) are considered, and the other massive main belt asteroids and non-gravitational forces are also accounted for. Results. By finding relatively small values of drift rates for (2) Pallas, we confirm that orbital scattering by this highly inclined object is indeed a minor effect. Unexpectedly, however, we obtained values of drift rates for changes in proper semi-major axis a caused by (10) Hygiea and (31) Euphrosyne larger than what was previously found for scattering by (4) Vesta. These high rates may have repercussions on the orbital evolution and age estimate of their respective families. © 2013 ESO.
Resumo:
This article documents the addition of 268 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alburnoides bipunctatus, Chamaerops humilis, Chlidonias hybrida, Cyperus papyrus, Fusarium graminearum, Loxigilla barbadensis, Macrobrachium rosenbergii, Odontesthes bonariensis, Pelteobagrus vachelli, Posidonia oceanica, Potamotrygon motoro, Rhamdia quelen, Sarotherodon melanotheron heudelotii, Sibiraea angustata, Takifugu rubripes, Tarentola mauritanica, Trimmatostroma sp. and Wallago attu. These loci were cross-tested on the following species: Alburnoides fasciatus, Alburnoides kubanicus, Alburnoides maculatus, Alburnoides ohridanus, Alburnoides prespensis, Alburnoides rossicus, Alburnoides strymonicus, Alburnoides thessalicus, Alburnoides tzanevi, Carassius carassius, Fusarium asiaticum, Leucaspius delineatus, Loxigilla noctis dominica, Pelecus cultratus, Phoenix canariensis, Potamotrygon falkneri, Trachycarpus fortune and Vimba vimba. © 2013 Blackwell Publishing Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Boletim elaborado pela Assessoria de Comunicação e Imprensa da Reitoria da UNESP
Resumo:
Revista elaborada pela Assessoria de Comunicação e Imprensa da Reitoria da UNESP