338 resultados para Águas profundas
em Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho"
Resumo:
Pós-graduação em Economia - FCLAR
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT P110, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of nonmetallic inclusions in the welded joint
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators
Resumo:
On the grounds of the great advances achieved over recent years, the process HF/ERW (High-Frequency/Electric Resistance Welding)welded pipe have played an active role in the oil and gas industry for deep water applications, at high and extremely low temperatures, under high pressure and in highly corrosive environments, gradually replacing manufactured pipes by other processes. However, studies have shown that defects in the welded joints are a the leading causes of pipelines failures, which has required the determination of toughness values in this region, in compliance with the strict recommendations of the codes and standards with manufacturers and construction companies, on the oil and gas sector. As part of the validation process required toughness values, this research project focuses on a microstructural analysis in HF / ERW tubes microalloyed, steel grade API 5CT N80, designed to explore oil and gas in deep waters, the subject of strategic relevance to the country because of the recent discoveries in the Santos mega fields: Tupi and Libra (pre-salt). In this scientific work will be presented and discussed the results of mechanical tensile and Charpy, a few CTOD tests curves (showing the trend of toughness values to be obtained), and the microstructures of the base material obtained by optical microscopy, with special emphasis on the formation of non-metallic inclusions in the welded joint
Resumo:
Having in mind that petroleum's history presents a huge growth, the exploration and production areas have been receiving lots of investments, in order to attend the increasing demand for gas and petroleum. Looking through that scenario, new technologies have been evolving in favor of discovering new natural petroleum deposits and act with effectiveness in truly deep waters without giving up the worldwide best operational security practices. The use of rigid pipes in marine installations have been rising quickly and, thanks to this reality, the many storage and pipe launching forms became study objects and are getting improved. The analysis of steel API X70 characteristics, proving that they are suitable for use in pipes developed to transport gas and petroleum is the theme of this presentation. A tensile test was conducted to determine the base metal's mechanical properties, draining's tension, traction's resistance, elasticity's modulus and maximum tension. An aspect that is concerning too is the metallographic analysis, in order to determine the studied iron's microstructure. Results of analyzes showed that the steel has high resistance, with good capacity for deformation and well defined yield point, concluding suitable for the application in question
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Avaliou-se a influência da disposição de mangueiras gotejadoras nos canteiros e a injeção ou não de cloro na água de irrigação, nas condições sanitárias do solo e da alface americana irrigada (Lactuca sativa L.) com águas receptoras de efluentes urbanos. Foram realizadas análises microbiológicas de amostras de água do solo e da alface, no decorrer de todo o ciclo de cultivo. Objetivou-se determinar a possível existência de Salmonella spp. e de formas evolutivas de parasitos humanos e a quantidade de coliformes fecais, em pontos e épocas diferentes do experimento, impedindo assim o consumo da alface. Os resultados não indicaram a presença dos dois primeiros em nenhuma das amostras, mas sim de parasitos não humanos (nematóides) de vida livre no solo. em relação à quantidade de coliformes fecais (NMP ml-1), o valor encontrado na cultura atende às exigências da Secretaria de Vigilância Sanitária do Ministério da Saúde brasileiro, porém a presença dos nematóides em quantidades superiores ao permitido pela Organização Mundial de Saúde (OMS) inviabiliza o seu consumo.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)