156 resultados para transmission network expansion planning
Resumo:
Report some of the changes in production and consumption occurring in the state of São Paulo. through the restructuring in motion systems, logistics and standards and taxation, as well as the impacts on urban spaces through new economic dynamics, imposed by the demands of corporate, is the purpose of this article. The decentralization of production and consumption towards the interior was made possible by the combination of hierarchical and ordered some basic elements such as technological innovations (ways and means of transport) and organizational (logistics, standards and taxation) which optimized the flow territorial state São Paulo. It is noteworthy, therefore: 1) the improvement of logistics as a strategy, planning and management of transport, storage and communications (including the granting of public services to private), 2) the technological improvement and expansion of motion systems (infrastructure, means of transport) and 3) the systems of rules and regulations through taxation and deregulation affect the circulatory system of a given space. Thus, both systems aims to disentangle the economic flows (goods, services, information, capital and people) and provide a more fluid territorial. The impacts on the State of São Paulo, mainly through its economic dynamics, revert positively and negatively, by changing the way one thinks and performs planning.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
This work presents a methodology to analyze transient stability for electric energy systems using artificial neural networks based on fuzzy ARTMAP architecture. This architecture seeks exploring similarity with computational concepts on fuzzy set theory and ART (Adaptive Resonance Theory) neural network. The ART architectures show plasticity and stability characteristics, which are essential qualities to provide the training and to execute the analysis. Therefore, it is used a very fast training, when compared to the conventional backpropagation algorithm formulation. Consequently, the analysis becomes more competitive, compared to the principal methods found in the specialized literature. Results considering a system composed of 45 buses, 72 transmission lines and 10 synchronous machines are presented. © 2003 IEEE.
Resumo:
An analysis of the performances of three important methods for generators and loads loss allocation is presented. The discussed methods are: based on pro-rata technique; based on the incremental technique; and based on matrices of circuit. The algorithms are tested considering different generation conditions, using a known electric power system: IEEE 14 bus. Presented and discussed results verify: the location and the magnitude of generators and loads; the possibility to have agents well or poorly located in each network configuration; the discriminatory behavior considering variations in the power flow in the transmission lines. © 2004 IEEE.
Resumo:
In this work, the planning of secondary distribution circuits is approached as a mixed integer nonlinear programming problem (MINLP). In order to solve this problem, a dedicated evolutionary algorithm (EA) is proposed. This algorithm uses a codification scheme, genetic operators, and control parameters, projected and managed to consider the specific characteristics of the secondary network planning. The codification scheme maps the possible solutions that satisfy the requirements in order to obtain an effective and low-cost projected system-the conductors' adequate dimensioning, load balancing among phases, and the transformer placed at the center of the secondary system loads. An effective algorithm for three-phase power flow is used as an auxiliary methodology of the EA for the calculation of the fitness function proposed for solutions of each topology. Results for two secondary distribution circuits are presented, whereas one presents radial topology and the other a weakly meshed topology. © 2005 IEEE.
Resumo:
The paper addresses the issue of apportioning of the cost of transmission losses to generators and demands in a multimarket framework. Line flows are unbundled using equivalent bilateral exchanges on a DC-network model and allocated to generators and demands. Losses are then calculated based on unbundled flows and straightforwardly apportioned to generators and demands. The proposed technique is particularly useful in a multimarket framework, where all markets have a common grid operator with complete knowledge of all network data, as is the case of the Brazilian electric-energy system. The methodology proposed is illustrated using the IEEE Reliability Test System and compared numerically with an alternative technique. Appropriate conclusions are drawn. © The Institution of Engineering and Technology 2006.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
Reliability is a key aspect in power system design and planning. Maintaining a reliable power system is a very important issue for their design and operation. Under the new competitive framework of the electricity sector, power systems find ever more and more strained to operate near their limits. Under this new scenario, it is crucial for the system operator to use tools that facilitate an energy dispatch that minimizes possible power cuts. This paper presents a mathematical model to calculate an energy dispatch that considers security constraints (single contingencies in transmission lines and transformers). The model involves pool markets and fixed bilateral contracts. Traditional methodologies that include security constraints are usually based in multistage dispatch processes. In this case, we propose a single-stage model that avoids the economic inefficiencies which result when conventional multi-stage dispatch approaches are applied. The proposed model includes an AC representation of the transport system and allows calculating the cost overruns incurred in due to reliability restrictions. We found that complying with fixed bilateral contracts, when they go above certain levels, might lead to congestion problems in transmission lines.
Resumo:
This paper is concerned with ℋ 2 and ℋ ∞ filter design for discrete-time Markov jump systems. The usual assumption of mode-dependent design, where the current Markov mode is available to the filter at every instant of time is substituted by the case where that availability is subject to another Markov chain. In other words, the mode is transmitted to the filter through a network with given transmission failure probabilities. The problem is solved by modeling a system with N modes as another with 2N modes and cluster availability. We also treat the case where the transition probabilities are not exactly known and demonstrate our conditions for calculating an ℋ ∞ norm bound are less conservative than the available results in the current literature. Numerical examples show the applicability of the proposed results. ©2010 IEEE.
Resumo:
This paper presents a new methodology for solving the optimal VAr planning problem in multi-area electric power systems, using the Dantzig-Wolfe decomposition. The original multi-area problem is decomposed into subproblems (one for each area) and a master problem (coordinator). The solution of the VAr planning problem in each area is based on the application of successive linear programming, and the coordination scheme is based on the reactive power marginal costs in the border bus. The aim of the model is to provide coordinated mechanisms to carry out the VAr planning studies maximizing autonomy and confidentiality for each area, assuring global economy to the whole system. Using the mathematical model and computational implementation of the proposed methodology, numerical results are presented for two interconnected systems, each of them composed of three equal subsystems formed by IEEE30 and IEEE118 test systems. © 2011 IEEE.
Resumo:
Distributed Generation, microgrid technologies, two-way communication systems, and demand response programs are issues that are being studied in recent years within the concept of smart grids. At some level of enough penetration, the Distributed Generators (DGs) can provide benefits for sub-transmission and transmission systems through the so-called ancillary services. This work is focused on the ancillary service of reactive power support provided by DGs, specifically Wind Turbine Generators (WTGs), with high level of impact on transmission systems. The main objective of this work is to propose an optimization methodology to price this service by determining the costs in which a DG incurs when it loses sales opportunity of active power, i.e, by determining the Loss of Opportunity Costs (LOC). LOC occur when more reactive power is required than available, and the active power generation has to be reduced in order to increase the reactive power capacity. In the optimization process, three objectives are considered: active power generation costs of DGs, voltage stability margin of the system, and losses in the lines of the network. Uncertainties of WTGs are reduced solving multi-objective optimal power flows in multiple probabilistic scenarios constructed by Monte Carlo simulations, and modeling the time series associated with the active power generation of each WTG via Fuzzy Logic and Markov Chains. The proposed methodology was tested using the IEEE 14 bus test system with two WTGs installed. © 2011 IEEE.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
The use of QoS parameters to evaluate the quality of service in a mesh network is essential mainly when providing multimedia services. This paper proposes an algorithm for planning wireless mesh networks in order to satisfy some QoS parameters, given a set of test points (TPs) and potential access points (APs). Examples of QoS parameters include: probability of packet loss and mean delay in responding to a request. The proposed algorithm uses a Mathematical Programming model to determine an adequate topology for the network and Monte Carlo simulation to verify whether the QoS parameters are being satisfied. The results obtained show that the proposed algorithm is able to find satisfactory solutions.
Resumo:
A multi-agent system with a percolation approach to simulate the driving pattern of Plug-In Electric Vehicle (PEV), especially suited to simulate the PEVs behavior on any distribution systems, is presented. This tool intends to complement information about the driving patterns database on systems where that kind of information is not available. So, this paper aims to provide a framework that is able to work with any kind of technology and load generated of PEVs. The service zone is divided into several sub-zones, each subzone is considered as an independent agent identified with corresponding load level, and their relationships with the neighboring zones are represented as network probabilities. A percolation approach is used to characterize the autonomy of the battery of the PVEs to move through the city. The methodology is tested with data from a mid-size city real distribution system. The result shows the sub-area where the battery of PEVs will need to be recharge and gives the planners of distribution systems the necessary input for a medium to long term network planning in a smart grid environment. © 2012 IEEE.
Resumo:
The urbanization of modern societies has imposed to the planners and decision-makers a more precise attention to facts not considered before. Several aspects, such as the energy availability and the deleterious effect of pollution on the populations, must be considered in the policy decisions of cities urbanization. The current paradigm presents centralized power stations supplying a city, and a combination of technologies may compose the energy mix of a country, such as thermal power plants, hydroelectric plants, wind systems and solar-based systems, with their corresponding emission pattern. A goal programming multi-objective optimization model is presented for the electric expansion analysis of a tropical city, and also a case study for the city of Guaratinguetá, Brazil, considering a particular wind and solar radiation patterns established according to actual data and modeled via the time series analysis method. Scenarios are proposed and the results of single environmental objective, single economic objective and goal programming multi-objective modeling are discussed. The consequences of each dispatch decision, which considers pollutant emission exportation to the neighborhood or the need of supplementing electricity by purchasing it from the public electric power grid, are discussed. The results revealed energetic dispatch for the alternatives studied and the optimum environmental and economic solution was obtained. © 2012 Elsevier Ltd.