154 resultados para thermal properties


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work evaluated the physicochemical and structural properties of rice starch of the cultivars IAC 202 and IRGA 417 modified by irradiation. Starch samples were irradiated by (60)Co in doses 1, 2 and 5kGy, on a rate of 0.4kGy/h. A control not irradiated was used for comparison. The granule morphology and A-type X-ray diffraction pattern were not altered by irradiation. There was an increase in amylose content, carboxyl content and acidity with irradiation. Gamma radiation did not affect the thermal properties of IAC202, but increased gelatinization temperature of IRGA417, in the higher dose (5kGy). The number of long chains of amylopectin was reduced and short chains were increased for IAC202, whereas for IRGA 417, the opposite was observed, probably due to cross-linking of starch chains. Starches had their physicochemical and structural properties modified by irradiation differently.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Zootecnia - FMVZ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The starch market has been growing and improving in recent years, leading to a search for products with specific characteristics that meet the industrial requirements. This work aimed to evaluate the centesimal composition of potato tubers cv Pirassu and its industrial potential. The potato cv Pirassu was cultivated in Pouso Alegre, mountainous region south of Minas Gerais state, with planting season in August and harvest season in November, 2011. The tubers were analyzed for color, pulp and centesimal composition. The starch extract was analyzed for centesimal composition, phosphorus content, apparent amylose, pasting properties and thermal properties. The results showed that the content of dry matter, total soluble sugar and starch of tubers, are compatible for processing for potato chips. The starch of this cultivate showed important viscosity characteristics for food industry such as: heat resistance and friction, good final viscosity and low granular organization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The application of extrusion technology in the food industry has enabled the development of new commercial products of fast preparation, and maintaining the nutritional characteristics after the process. During this process there are changes in raw material due to the action of temperature, humidity and mechanical friction resulting in a modified product which can be used in various industrial applications. This work aimed to evaluate the effect of the composition of the raw material and operating conditions of the extrusion process on the properties of paste and thermal properties in the development of a functional instant flour of cassava and soybean. The results showed significant effects of all operating parameters on the rheological properties studied. The extruded flours showed no residual gelatinization enthalpy, suggesting that the starch in the samples was gelatinized. The experimental conditions of the smallest percentages of cassava residue (10%) and high soybean flour (25%) mixed with cassava starch, extrusion temperature of 75ºC and low screw speed (170rpm) leads to obtain instant flour with desirable characteristics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência dos Materiais - FEIS

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The benzoxaxine resin is a new class of thermoset phenolic resin, which is presenting, in the lasts decades, a great application in the aircraft industry due mainly to its excellent mechanical and thermal properties. This resin associates the mechanical properties of epoxy resin with the thermal and flame retardant properties of phenolic resin. In this context, they are considered polymers of high performance and they are excellent candidates to replace the current thermoset matrices used in the processing of high performance composites. Thus, in this study nanostructured composites Benzoxazine/CNT were produced at different concentrations of functionalized and non-functionalized CNT (0,1%; 0,5% and 1,0% w/w). The thermal stability of the benzoxazine resin and its nanostructured composites was studied using thermogravimetry (TGA) and degradation kinetic model Ozawa-Wall-Flynn (O-W-F). The thermal characterization also included differential scanning calorimetry (DSC) and dynamic-mechanical analysis, infrared spectroscopy with Fourier transform (FTIR) and scanning electron microscopy (SEM).The introduction of non-functionalized CNT at low concentrations resulted in nanostructured composites with better thermal properties in relation to the neat resin. For all cases, however, the dispersion of CNT in the matrix was ineffective

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The guava seed protein isolate ( PI) was obtained from the protein precipitation belonging to the class of the gluteline (Ip 4.5). The conditions for the preparation of the PI were determined by both the solubility curve and simultaneous thermogravimetry-differential thermal analysis (TG-DTA): pH 11.5, absence of NaCl and whiteners and T=( 25 +/- 3) degrees C. Under these conditions a yield of 77.0 +/- 0.4%, protein content of 94.2 +/- 0.3, ashes 0.50 +/- 0.05% and thermal stability, T= 200 degrees C, were obtained. The TG-DTA curves and the PI emulsification capacity study showed the presence of hydrophobic microdomains at pH 11.5 and 3.0 suggesting a random coil protein conformation and, to pH 10.0, an open protein conformation. The capacity of emulsification (CE), in the absence of NaCl, was verified for: 1 - pH 3.0 and 8.5, using the IP extracted at pH 10.0 and 11.5, CE >= 343 +/- 5 g of emulsified oil/g of protein; 2 - pH 6.60 just for the PI obtained at pH 11.5, CE >= 140 +/- 8 g of emulsified oil/g of protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present work studied the influence of thermal treatment in oxygen rich atmosphere on heterogenous junctions in Mn-doped SnO2 polycrystalline system presenting varistor behavior. The samples were prepared by conventional oxide mixture methodology, and were submitted to heat treatment in oxygen rich atmosphere at 900 degrees C for 2h. The samples were characterized by X-ray diffraction, scanning electron microscopy, dc and ac electrical measurements. The results showed that there is an evident relationship between the microstructure heterogeneity and non-ohmic electrical properties. It was found that for this SnO2 center dot MnO-based varistor system the heat treatment in oxygen rich atmosphere does not necessarily increase the varistors properties, which was related to the decrease in the grain boundary resistance. The results are compared with Co-doped SnO2 varistors and ZnO based varistors. (C) 2008 WILEY-VCH Verlay GmbH & Co. KGaA, Weinheim.