128 resultados para residual gas analysis
Resumo:
In this paper is proposed the use of biogas generated in the Wastewater Treatment Plant of a Dairy industry. The objective is to apply a thermoeconomic analysis to the supplementary cold water production of an absorption refrigeration system (NH3 + H2O) by the burning of such gas. The exergoeconomic analysis is carried out to allow a comparison between an absorption refrigeration system and of an equivalent compression refrigeration system that uses NH3 as work fluid. The proposed exergoeconomic model uses functional diagrams and allows one to obtain the exergetic incremental functions for each component individually and for the system as a whole. The model minimizes the exergetic manufacturing cost (EMC) which represents the cost of supplementary cold water production at 1degreesC (exergetic base) needed for this dairy's cold storage. As a conclusion, the absorption refrigeration system is better than compression refrigeration system, when the biogas cost is not considered. 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fuel Cell is the emerging technology of cogeneration, and has been applied successfully in Japan, U.S.A. and some OECD countries. This system produces electric power by an electrolytic process, in which chemical substances (the most utilized substances are solid oxide, phosphoric acid and molten carbonate) absorb the components H-2 and O-2 of the combustion fuel. This technology allows the recovery of residual heat, available from 200 degrees C up to 1000 degrees C (depending on the electrochemical substance utilized), which can be used for the production of steam, hot or cold water, or hot or cold air, depending on the recuperation equipment used. This article presents some configurations of fuel cell cogeneration cycles and a study of the technical and economic feasibility for the installation of the cogeneration systems utilizing fuel cell, connected to an absorption refrigeration system for st building of the tertiary sector, subject to conditions in Brazil. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The increase in the use of natural gas in Brazil has stimulated public and private sectors to analyse the possibility of using combined cycle systems for generation of electrical energy. Gas turbine combined cycle power plants are becoming increasingly common due to their high efficiency, short lead times, and ability to meet environmental standards. Power is produced in a generator linked directly to the gas turbine. The gas turbine exhaust gases are sent to a heat recovery steam generator to produce superheated steam that can be used in a steam turbine to produce additional power. In this paper a comparative study between a 1000 MW combined cycle power plant and 1000 kW diesel power plant is presented. In first step, the energetic situation in Brazil, the needs of the electric sector modification and the needs of demand management and integrated means planning are clarified. In another step the characteristics of large and small thermoelectric power plants that use natural gas and diesel fuel, respectively, are presented. The ecological efficiency levels of each type of power plant is considered in the discussion, presenting the emissions of particulate material, sulphur dioxide (SO2), carbon dioxide (CO2) and nitrogen oxides (NOx). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a thermoeconomic functional analysis method based on the Second Law of Thermodynamics and applied to analyze four cogeneration systems is presented. The objective of the developed technique is to minimize the operating costs of the cogeneration plant, namely exergetic production cost (EPC), assuming fixed rates of electricity production and process steam in exergy base. In this study a comparison is made between the same four configurations of part I. The cogeneration system consisting of a gas turbine with a heat recovery steam generator, without supplementary firing, has the lowest EPC. (C) 2004 Published by Elsevier Ltd.
Resumo:
This paper aims to analyze dual-purpose systems focusing the total cost optimization; a superstructure is proposed to present cogeneration systems and desalination technologies alternatives for the synthesis process. The superstructure consists of excluding components, gas turbines or conventional steam generators with excluding alternatives of supplying fuel for each combustion system. Also, backpressure or condensing/extraction steam turbine for supplying process steam could be selected. Finally one desalination unit chosen between electrically-driven or steam-driven reverse osmosis. multi-effect and multistage flash should be included. The analysis herein performed is based on energy and mass conservation equations, as well as the technological limiting equation of equipment. The results for ten different commercial gas turbines revealed that electrically-driven reverse osmosis was always chosen together with both natural gas and gasified biomass gas turbines. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
Residual stresses play an important role in the fatigue lives of structural engineering components. In the case of near surface tensile residual stresses, the initiation and propagation phases of fatigue process are accelerated; on the other hand, compressive residual stresses close to the surface may increase fatigue life. In both decorative and functional applications, chromium electroplating results in excellent wear and corrosion resistance. However, it is well known that it reduces the fatigue strength of a component. This is due to high tensile internal stresses and microcrack density. Efforts to improve hard chromium properties have increased in recent years. In this study, the effect of a nickel layer sulphamate process, as simple layer and interlayer, on fatigue strength of hard chromium electroplated AISI 4340 steel hardness - HRc 53, was analysed. The analysis was performed by rotating bending fatigue tests on AISI 4340 steel specimens with the following experimental groups: base material, hard chromium electroplated, sulphamate nickel electroplated, sulphamate nickel interlayer on hard chromium electroplated and electroless nickel interlayer on hard chromium electroplated. Results showed a decrease in fatigue strength in coated specimens and that both nickel plating interlayers were responsible for the increase in fatigue life of AISI 4340 chromium electroplated steel. The shot peening pre-treatment was efficient in reducing fatigue loss in the alternatives studied.
Resumo:
In this work the effect of Gas Tungsten Arc Welding (GTAW) repairs on the axial fatigue strength of an AISI 4130 steel welded joint used in airframe critical to the flight-safety was investigated. Fatigue tests were performed at room temperature on 0.89 mm thick hot-rolled plates with constant amplitude and load ratio of R = 0.1, at 20 Hz frequency. Monotonic tensile tests, optical metallography and microhardness, residual stress and weld geometric factors measurements were also performed. The fatigue strength decreased with the number of GTAW repairs, and was related to microstructural and microhardness changes, as well as residual stress field and weld profile geometry factors, which gave origin to high stress concentration at the weld toe. (C) 2011 Elsevier B.V. All rights reserved.