248 resultados para metabolic acidosis
Resumo:
This study investigated the effects of growth hormone therapy on energy expenditure, lipid profile, oxidative stress and cardiac energy metabolism in aging and obesity conditions. Life expectancy is increasing in world population and with it, the incidence of public health problems such as obesity and cardiac alterations. Because growth hormone (GH) concentration is referred to be decreased in aging conditions, a question must be addressed: what is the effect of GH on aging related adverse changes? To investigate the effects of GH on cardiac energy metabolism and its association with calorimetric parameters, lipid profile and oxidative stress in aged and obese rats, initially 32 male Wistar rats were divided into 2 groups (n = 16), C: given standard-chow and water; H: given hypercaloric-chow and receiving 30 % sucrose in its drinking water. After 45 days, both C and H groups were divided into 2 subgroups (n = 8), C + PL: standard-chow, water, and receiving saline subcutaneously; C + GH: standard-chow, water, and receiving 2 mg/kg/day rhGH subcutaneously; H + PL: hypercaloric-chow, 30 % sucrose, receiving saline subcutaneously; H + GH: hypercaloric-chow, 30 % sucrose, receiving rhGH subcutaneously. After 30 days, C + GH and H + PL rats had higher body mass index, Lee-index, body fat content, percent-adiposity, serum triacylglycerol, cardiac lipid-hydroperoxide, and triacylglycerol than C + PL. Energy-expenditure (RMR)/body weight, oxygen consumption and fat-oxidation were higher in H + GH than in H + PL. LDL-cholesterol was highest in H + GH rats, whereas cardiac pyruvate-dehydrogenase and phosphofrutokinase were higher in H + GH and H + PL rats than in C + PL. In conclusion, the present study brought new insights on aging and obesity, demonstrating for the first time that GH therapy was harmful in aged and obesity conditions, impairing calorimetric parameters and lipid profile. GH was disadvantageous in control old rats, having undesirable effects on triacylglycerol accumulation and cardiac oxidative stress.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dry extract of the genus Passiflora has been shown to help control glycemia and lipid levels. The objective of this study was to evaluate the effects of passion fruit (P. edulis) on the biochemical profile of offspring from diabetic rats. Diabetes was induced by streptozotocin. The diabetes group consisted of 10 rats with glucose levels greater than 200 mg/dL; the nondiabetic (control) group consisted of 10 rats with glucose levels less than 120 mg/dL. After the diagnosis of diabetes, the mating phase was started. By day 21 of pregnancy, the offspring were born; the dams were kept in individual cages with their offspring until the weaning period. The offspring were then divided into 4 groups (n = 15 each): G1 were offspring from control dams, G2 were offspring from treated nondiabetic dams, G3 were offspring from diabetic dams, and G4 were offspring from treated diabetic dams. For 30 consecutive days, G1 and G3 offspring were treated with vehicle (oral gavage) and G2 and G4 offspring were treated with passion fruit juice (oral gavage). After 30-day treatment, the animals were anesthetized and killed, and blood was drawn immediately for analysis of the biochemical profile (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and glucose). The G2 and G4 rats showed significantly reduced total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels and an increased high-density lipoprotein cholesterol level. The use of passion fruit juice improved lipid profiles, suggesting that this plant may have beneficial effects in the prevention and treatment of dyslipidemias and hyperglycemia.