505 resultados para median arterial pressure
Resumo:
Sixteen cats were used to compare the cardiovascular and anesthetic effects of remifentanil (REMT) or alfentanil (ALF) in propofol-anesthetized cats undergoing ovariohysterectomy. After premedication with acepromazine, anesthesia was induced and maintained with a constant rate infusion of propofol (0.3 mg/kg/min). REMT or ALF infusions were administered simultaneously with propofol. Heart rate (HR), systolic arterial pressure (SAP), pulse oximetry (SpO(2)), rectal temperature (RT), and response to surgical stimulation were recorded at predefined time points during anesthesia. Data [mean +/- standard deviation (SD)] were analyzed by analysis of variance (ANOVA) for repeated measures followed by a Dunnett's test and Student t-test (P < 0.05). SAP was significantly lower in ALF group than in REMI group. Extubation time was significantly shorter in REMI than in ALF group. Overall infusion rate of REMI and ALF was 0.24 +/- 0.05 mu g/kg/min and 0.97 +/- 0.22 mu g/kg/min, respectively. The combination of propofol and REM! or ALF provided satisfactory anesthesia in cats undergoing ovariohysterectomy. (C) 2011 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudaram-se as alterações hemodinâmicas e respiratórias em cadelas, decorrentes do parto normal e da cesariana, utilizando-se sevofluorano como agente de manutenção anestésica. Foram acompanhados seis partos normais e seis cesarianas, sendo as últimas realizadas sob anestesia geral utilizando-se acepromazina, propofol e sevofluorano. Durante o parto normal, ao nascimento de cada filhote, as gestantes foram monitoradas (temperatura retal, pressão arterial não-invasiva, freqüências respiratória e cardíaca, tempo de reperfusão capilar e gasometria). Durante a cesariana foram avaliadas as mesmas características citadas para o parto normal, acrescentando-se a temperatura esofágica e a pressão arterial invasiva, ao longo de todo o período anestésico, além da qualidade da recuperação anestésica. Os valores das variáveis: freqüência cardíaca, pressão arterial, freqüência respiratória, tempo de reperfusão capilar e o pH do sangue arterial no grupo submetido à cesariana foram menores que os das cadelas de partos normais, evidenciando a relativa depressão cardiorrespiratória produzida pelo procedimento anestésico. O protocolo anestésico empregado não comprometeu a viabilidade e a saúde das parturientes e dos filhotes e é seguro em cadelas gestantes, podendo ser utilizado nas operações cesarianas.
Resumo:
Objective To evaluate the effects of butorphanol on cardiopulmonary parameters in dogs anesthetized with desflurane and breathing spontaneously.Study design Prospective, randomized experimental trial.Animals Twenty dogs weighing 12 +/- 3 kg.Methods Animals were distributed into two groups: a control group (CG) and butorphanol group (BG). Propofol was used for induction and anesthesia was maintained with desflurane (10%). Forty minutes after induction, the dogs in the CG received sodium chloride 0.9% (0.05 mL kg(-1) IM), and dogs in the BG received butorphanol (0.4 mg kg(-1) IM). The first measurements of body temperature (BT), heart rate (HR), arterial pressures (AP), cardiac output (CO), cardiac index (CI), central venous pressure (CVP), stroke volume index (SVI), pulmonary arterial occlusion pressure (PAOP), mean pulmonary arterial pressure (mPAP), left ventricular stroke work (LVSW), systemic (SVR) and pulmonary (PVR) vascular resistances, respiratory rate (fR), and arterial oxygen (PaO(2)) and carbon dioxide (PaCO(2)) partial pressures were taken immediately before the administration of butorphanol or sodium chloride solution (T0) and then at 15-minute intervals (T15-T75).Results In the BG, HR, AP, mPAP and SVR decreased significantly from T15 to T75 compared to baseline. fR was lower at T30 than at T0 in the BG. AP and fR were significantly lower than in the CG from T15 to T75. PVR was lower in the BG than in the CG at T30, while PaCO(2) was higher compared with T0 from T30 to T75 in the BG and significantly higher than in the CG at T30 to T75.Conclusions and clinical relevance At the studied dose, butorphanol caused hypotension and decreased ventilation during desflurane anesthesia in dogs. The hypotension (from 86 +/- 10 to 64 +/- 10 mmHg) is clinically relevant, despite the maintenance of cardiac index.
Resumo:
Inhibitory serotonergic and cholecystokinergic mechanisms in the lateral parabrachial nucleus and central GABAergic mechanisms are involved in the regulation of water and NaCl intake. In the present study we investigated if the GABA(A) receptors in the lateral parabrachial nucleus are involved in the control of water, NaCl and food intake in rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the lateral parabrachial nucleus were used. Bilateral injections of muscimol (0.2 nmol/0.2 mu l) into the lateral parabrachial nucleus strongly increased 0.3 M NaCl (20.3 +/- 7.2 vs. saline: 2.6 +/- 0.9 ml/180 min) without changing water intake induced by the treatment with the diuretic furosemide combined with low dose of the angiotensin converting enzyme inhibitor captopril s.c. In euhydrated and satiated rats, bilateral lateral parabrachial nucleus injections of muscimol (0.2 and 0.5 nmol/0.2 0) induced 0.3 M NaCl intake (12.1 +/- 6.5 and 32.5 +/- 7.3 ml/180 min, respectively, vs. saline: 0.4 +/- 0.2 ml/180 min) and water intake (5.2 +/- 2.0 and 7.6 +/- 2.8 ml/ 180 min, respectively, vs. saline: 0.8 +/- 0.4 ml/180 min), but no food intake (2 +/- 0.4 g/240 min vs. saline: 1 +/- 0.3 g/240 min). Bilateral lateral parabrachial nucleus injections of the GABAA antagonist bicuculline (1.6 nmol/0.2 mu l) abolished the effects of muscimol (0.5 nmol/0.2 mu l) on 0.3 M NaCl and water intake. Muscimol (0.5 nmol/0.2 mu l) into the lateral parabrachial nucleus also induced a slight ingestion of water (4.2 +/- 1.6 ml/240 min vs. saline: 1.1 +/- 0.3 ml/240 min) when only water was available, a long lasting (for at least 2 h) increase on mean arterial pressure (14 +/- 4 mm Hg, vs. saline: -1 +/- 1 mm Hg) and only a tendency to increase urinary volume and Na+ and K+ renal excretion. Therefore the activation of GABAA receptors in the lateral parabrachial nucleus induces strong NaCl intake, a small ingestion of water and pressor responses, without changes on food intake. (c) 2005 Published by Elsevier Ltd on behalf of IBRO.
Resumo:
The nucleus of the solitary tract (NTS) is the site of the first synapse of cardiovascular afferent fibers in the central nervous system. Important mechanisms for cardiovascular regulation are also present in the caudal pressor area (CPA) localized at the caudal end of the ventrolateral medulla. In the present study we sought to investigate the role of the commissural subnucleus of the NTS (commNTS) on pressor and tachycardic responses induced by L-glutamate injected into the CPA. Male Holtzman rats (n=8 rats/group) anesthetized with urethane (1.2 g/kg of body weight, iv) received injections of the GABAA receptor agonist muscimol into the commNTS. Unilateral injection of L-glutamate (10 nmol/ 100 nL) into the CPA increased mean arterial pressure (MAP, 31 4 mm Hg, vs. saline: 3 +/- 2 mm Hg) and heart rate (HR, 44 8 bpm, vs. saline: 10 7 bpm). inhibition of commNTS neurons with muscimol (120 pmol/60 nL) abolished the increase in MAP (9 4 mm Hg) and HR (17 7 bpm) produced by L-glutamate into the CPA. The present results suggest that the pressor and tachycardic responses to CPA activation are dependent on commNTS mechanisms.
Resumo:
The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The cholinergic agonist pilocarpine injected intraperitoneally (ip) increases mean arterial pressure (MAP) and superior mesenteric (SM) vascular resistance and reduces submandibular/sublingual gland (SSG) vascular resistance. In the present study, we investigated the effects of electrolytic lesions of the anteroventral third ventricle (AV3V) region on the changes in MAP, SM, and SSG vascular resistances induced by ip pilocarpine. Male Holtzman rats anesthetized with urethane (1.0 g/kg) and chloralose (60 mg/kg) were submitted to sham or electrolytic AV3V lesions and bad pulsed Doppler flow probes implanted around the arteries. Contrary to sham rats, in 1-h and 2-day AV3V-lesioned rats, pilocarpine (4 mu mol/kg) ip decreased MAP (-41 +/- 4 and -26 4 mm Hg, respectively, vs. sham: 19 +/- 4 mm Hg) and SM (-48 +/- 11 and -45 +/- 10%, respectively, vs. sham: 41 +/- 10%) and hindlimb vascular resistances (-65 +/- 32 and -113 +/- 29%, respectively, vs. sham: 19 +/- 29%). In 7-day AV3V-lesioned rats, pilocarpine produced no changes on MAP and SM and hindlimb vascular resistances. Similar to sham rats, pilocarpine reduced SSG vascular resistance 1 h after AV3V lesions (-46 +/- 6%, vs. sham: -40 +/- 6%), but it produced no effect 2 days after AV3V lesions and increased SSG vascular resistance (37 6%) in 7-day AV3V-lesioned rats. The responses to ip pilocarpine were similar in 15-day sham and AV3V-lesioned rats. The cholinergic antagonist atropine methyl bromide (10 nmol) iv slightly increased the pressor response to ip pilocarpine in sham rats and abolished for 40 min the fall in MAP induced by ip pilocarpine in 1-h AV3V-lesioned rats. The results suggest that central mechanisms dependent on the AV3V region are involved in the pressor responses to ip pilocarpine. Although it was impaired 2 and 7 days after AV3V lesions, pilocarpine-induced salivary gland vasodilation was not altered 1 h after AV3V lesions which suggests that this vasodilation is not directly dependent on the AV3V region. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
1 Nitric oxide (NO) and alpha(2)-adrenoceptor and imidazoline agonists such as moxonidine may act centrally to inhibit sympathetic activity and decrease arterial pressure.2 In the present study, we investigated the effects of pretreatment with L-NAME ( NO synthesis inhibitor), injected into the 4th ventricle (4th V) or intravenously (i.v.), on the hypotension, bradycardia and vasodilatation induced by moxonidine injected into the 4th V in normotensive rats.3 Male Wistar rats with a stainless steel cannula implanted into the 4th V and anaesthetized with urethane were used. Blood flows were recorded by use of miniature pulsed Doppler flow probes implanted around the renal, superior mesenteric and low abdominal aorta.4 Moxonidine (20 nmol), injected into the 4th V, reduced the mean arterial pressure (-42+/-3 mmHg), heart rate (-22+/-7 bpm) and renal (-62+/-15%), mesenteric (-41+/-8%) and hindquarter (-50+/-8%) vascular resistances.5 Pretreatment with L-NAME (10 nmol into the 4th V) almost abolished central moxonidine-induced hypotension (-10+/-3 mmHg) and renal (-10+/-4%), mesenteric (-11+/-4%) and hindquarter (-13+/-6%) vascular resistance reduction, but did not affect the bradycardia (-18+/-8 bpm).6 the results indicate that central NO mechanisms are involved in the vasodilatation and hypotension, but not in the bradycardia, induced by central moxonidine in normotensive rats. British Journal of Pharmacology (2004).
Resumo:
The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion, Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141 +/- 10% and 133 +/- 10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12 +/- 3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107 +/- 7% and 103 +/- 6% (10 min), and 107 +/- 4 and 106 +/- 4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), I.V..), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 M NaCl, 0.18 ml (100 g body weight)(-1), I.V.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, I.V.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-D beta H-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.
Resumo:
In the present study, we investigated the effects of pretreatment with N-G-nitro-L-arginine methyl ester (L-NAME) (nitric oxide synthase inhibitor) injected intravenously (IV) on the hypotension, bradycardia, and vasodilation produced by moxonidine (alpha(2)-adrenergic/imidazoline receptor agonist) injected into the fourth brain ventricle (4th V) in rats submitted to acute hypertension that results from baroreflex blockade by bilateral injections of kynurenic acid (kyn, glutamatergic receptor antagonist) into the nucleus of the solitary tract (NTS) or in normotensive rats. Male Wistar rats (n = 5 to 7/group) anesthetized with IV urethane (1.0 g kg(-1) of body weight) and a-chloralose (60mg kg(-1) of body weight) were used. Bilateral injections of kyn (2.7 nmol 100 nL(-1)) into the NTS increased baseline mean arterial pressure (148 +/- 11 mm Hg, vs. control: 102 +/- 4mm Hg) and baseline heart rate (417 +/- 11 bpm, vs. control: 379 +/- 6 bpm). Moxonidine (20 nmol mu L-1) into the 4th V reduced mean arterial pressure and heart rate to similar levels in rats treated with kyn into the NTS (68 +/- 9 mm Hg and 359 +/- 7 bpm) or in control normotensive rats (66 +/- 7 mm Hg and 362 +/- 8 bpm, respectively). The pretreatment with L-NAME (2 5 mu mol kg-1, IV) attenuated the hypotension produced by moxonidine into the 4th V in rats treated with kyn (104 +/- 6 mm Hg) or in normotensive rats (95 +/- 8 mm Hg), without changing bradycardia. Moxonidine into the 4th V also reduced renal, mesenteric, and hindquarter vascular resistances in rats treated or not with kyn into the NTS and the pretreatment with L-NAME IV reduced these effects of moxonidine. Therefore, these data indicate that nitric oxide mechanisms are involved in hypotension and mesenteric, renal, and hindquarter vasodilation induced by central moxonidine in normotensive and in acute hypertensive rats.
Resumo:
Our studies have focused on the effect of injection of L-NAME and sodium nitroprussiate (SNP) on the salivary secretion, arterial blood pressure, sodium excretion and urinary volume induced by pilocarpine which was injected into the medial septal area (MSA). Rats were anesthetized with urethane (1.25 g/kg b. wt.) and a stainless steel cannula was implanted into their MSA. The amount of saliva secretion was studied over a five-minute period after injection of pilocarpine into MSA. Injection of pilocarpine (10, 20, 40, 80, 160 mug/mul) into MSA produced a dose-dependent increase in salivary secretion. L-NG-nitro arginine methyl-esther (L-NAME) (40 mug/mul), a nitric oxide (NO) synthase inhibitor, was injected into MSA prior to the injection of pilocarpine into MSA, producing an increase in salivary secretion due to the effect of pilocarpine. Sodium nitroprussiate (SNP) (30 mug/mul) was injected into MSA prior to the injection of pilocarpine into MSA attenuating the increase in salivary secretion induced by pilocarpine. Medial arterial pressure (MAP) increase after injections of pilocarpine into the MSA. L-NAME injected into the MSA prior to injection of pilocarpine into MSA increased the MAP. SNP injected into the MSA prior to pilocarpine attenuated the effect of pilocarpine on MAP. Pilocarpine (40 mug/mul) injected into the MAS induced an increase in sodium and urinary excretion. L-NAME injected prior to pilocarpine into the MSA increased the urinary sodium excretion and urinary volume induced by pilocarpine. SNP injected prior to pilocarpine into the MSA decreased the sodium excretion and urinary volume induced by pilocarpine. All these roles of pilocarpine depend on the release of nitric oxide into the MSA. We may also conclude that the MSA is involved with the cholinergic excitatory mechanism that induce salivary secretion, increase in MAP and increase in sodium excretion and urinary volume. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Injections of the excitatory amino acid L-glutamate (L-glu) into the rostral ventrolateral medulla (RVLM) directly activate the sympathetic nervous system and increase mean arterial pressure (MAP). A previous study showed that lesions of the anteroventral third ventricle region in the forebrain reduced the pressor response to L-glu into the RVLM. In the present study we investigated the effects produced by injections of atropine (cholinergic antagonist) into the lateral ventricle (LV) on the pressor responses produced by L-ghl into the RVLM. Male Holtzman rats (280-320 g, n=5 to 12/group) with stainless steel cannulas implanted into the RVLM, LV or 4th ventricle (4th V) were used. MAP and heart rate (HR) were recorded in unanesthetized rats. After saline into the LV, injections of L-glu (5 nmol/100 nl) into the RVLM increased MAP (51 +/- 4 mm Hg) without changes in HR. Atropine (4 nmol/1 PI) injected into the LV reduced the pressor responses to L-glu into the RVLM (36 +/- 5 mm Hg), However, atropine at the same dose into the 4th V or directly into the RVLM did not modify the pressor responses to L-glu into the RVLM (45 +/- 2 and 49 +/- 4 mm Hg, respectively, vs. control: 50 +/- 4mmHg). Central cholinergic blockade did not affect baro and chemoreflex nor the basal MAP and HR. The results suggest that cholinergic mechanisms probably from forebrain facilitate or modulate the pressor responses to L-glu into the RVLM. The mechanism is activated by acetylcholine in the forebrain, however, the neurotransmitter released in the RVLM to facilitate the effects of glutamate is not acetylcholine. (C) 2007 Elsevier B.V. All rights reserved.