291 resultados para marginal bone loss
Resumo:
The chronology of the wound healing process following tooth extraction was studied by means of two kinds of histological cuts. Two groups of 42 albino rats were employed. In the first one, the sockets were cut in a transversal way. In the second one the cuts were performed in a longitudinal way. The rats were sacrificed after 3, 6, 9, 15, 21, 24, and 28 days following the surgeries. After laboratorial outline the obtained pieces were stained by hematoxylin and eosin for histological purposes. It way be concluded that: 1. The results got from longitudinal cuts were in agreement to those described by other authors; 2. The transversal cuts allow us to detect intensive resorption of the lateral alveolar wall at the cervical thirs; 3. On the 21st day following dental extraction the incisor socket of the rat shows a great deal of areas not ossified; 4. The healing process of dental extraction wounds of the upper incisor of the rat is completed between 24 and 28 post operative days.
Resumo:
A study was conducted to analyze the effects of propolis mouth rinse on the repair of surgical wounds after sulcoplasty by the modified Kazanjian technique. Twenty-seven patients who underwent sulcoplasty were divided into three groups: C1--patients who did not use the mouth rinse C2--patients who used a mouth rinse containing 5% aqueous alcohol T--patients who used a mouth rinse containing 5% propolis in aqueous alcohol solution. The patients returned 7, 14, 30, and 45 days after surgery for cytological and clinical evaluation. It was concluded that: 1) the mouth rinse containing propolis in aqueous alcohol solution aids repair of intra-buccal surgical wounds and exerts a small pain-killing and anti-inflammatory effect; 2) the vehicle employed has a minor irritant effect on intra-buccal surgical wounds; 3) exfoliative cytology allows epithelization of intrabuccal surgical wounds.
Resumo:
The objective of this study was to evaluate periapical and apical repair using calcium hydroxide root canal dressings for different lengths of times in teeth with induced chronic periapical lesions. A total of 61 root canals of maxillary and mandibular premolars from 4 dogs were used. After mechanical preparation of the root canals using the crown-down technique, and 5.25% NaOCl as irrigating solution, the apical foramen was enlarged in all cases. A calcium hydroxide root canal dressing was applied. The control group did not receive a root canal dressing. The animals were killed at 7, 15 or 30 days. After histological preparation, serial sections were stained with hematoxylin-eosin and Mallory's trichrome. The best histopathological results occurred at 15 and 30 days, and the worst results occurred at 7 days and in the control group.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Background: The treatment of cyclosporin A triggers an early bone loss and gingival overgrowth. There is a lack of studies exploring the effects of long-term cyclosporin A therapy on alveolar bone homeostasis and gingival tissue. Objective: The purpose of this study was to evaluate the effects of long-term therapy with cyclosporin A on the gingival tissue and on the alveolar bone metabolism in rats. Materials and methods: Rats were treated for 60, 120, 180 and 240 days with a daily subcutaneous injection of 10 mg/kg body weight of cyclosporin A. At the end of experimental periods, animals were killed and the serum calcium (Ca2+) and alkaline phosphatase levels were measured in all groups. After histological processing, the oral epithelium and the connective tissue, as well as volume densities of alveolar bone (Vb) and multinucleated osteoclasts (Vo), were assessed at the region of the lower first molars. Results: Significant increases in the serum alkaline phosphatase were observed in those groups that received cyclosporin A therapy. After 60 and 120 days of the treatment with cyclosporin A, evident gingival overgrowth associated with a significant increase of epithelium and connective tissue was observed, as well as a decrease of the densities of bone and an increase of densities of osteoclasts. After 180 and 240 days of the treatment, there was a reduction of the gingival overgrowth associated with significant decreases of epithelium and connective tissue, as well as an increase of bone densities and a decrease of osteoclasts. Conclusion: Within the limits of this experimental study, it can be concluded that the deleterious periodontal effects of cyclosporin A administration may be time-related side-effects. © Blackwell Munksgaard, 2004.
Resumo:
The aim of the present study was to evaluate the periodontal conditions of anterior teeth that presented pathologic migration in patients with chronic periodontitis and to compare periodontal destruction in migrated versus non-migrated teeth. The sample included 32 patients of both sexes (mean age: 46.0 +/- 11.6 years) diagnosed with generalized chronic periodontitis and selected on the basis of the presence of pathologic migration in one or more anterior teeth. This migration was classified according to the following categories: facial flaring, diastema, proximal tilting, rotation or extrusion. The periodontal parameters recorded were clinical attachment loss (CAL) and percentage of radiographic bone loss (BL). Mean CAL of 5.50 +/- 2.20 mm and mean BL of 41.90 +/- 15.40% were found in 115 teeth assessed. The most frequent type of migration was facial flaring (34.80%), followed by diastema (27.00%). Extrusion was hardly observed in the sample (4.30%). However, greater severity of BL and CAL were observed in teeth with this type of migration (59.44% and 8.42 mm, respectively), and in teeth with facial flaring (45.17% of BL and 6.07 mm of CAL). Kruskal-Wallis test indicated that BL presented by teeth with extrusion or facial flaring was greater than that observed in rotated or tilted teeth (p < 0.05), while there was no difference between groups regarding CAL (p = 0.11). It was observed that anterior teeth with pathologic migration presented greater CAL and BL (5.1 mm and 40%) than non-migrated teeth (4.1 and 31%). The study indicated that the most prevalent kind of pathologic migration is facial flaring, which was associated to higher level of bone loss.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
Proteinase-activated receptor-2 (PAR2) is a G-protein-coupled receptor that mediates cellular responses to extracellular proteinases. Since PAR2 is expressed by oral epithelial cells, osteoblasts, and gingival fibroblasts, where its activation releases interleukin-8, we hypothesized that PAR2 activation may participate in periodontal disease in vivo. We investigated the role of PAR2 activation in periodontal disease in rats. Radiographic and enzymatic (myeloperoxidase) analysis revealed that topical application of PAR2 agonist causes periodontitis but also exacerbates existing periodontitis, leading to significant alveolar bone loss and gingival granulocyte infiltration. Inhibition of matrix metalloproteinase (MMP) and cyclo-oxygenase (COX) decreased PAR2 agonist-induced periodontitis. More specifically, the overexpression of COX-1, COX-2, MMP-2, and MMP-9 in gingival tissues suggests that they are involved in PAR 2-induced periodontitis. In conclusion, PAR2 agonist causes periodontitis in rats through a mechanism involving prostaglandin release and MMP activation. Inhibition of PAR2 may represent a novel approach to modulate host response in periodontitis.
Resumo:
This paper reports on a 4-year-old male who had dyskeratosis congenita and who acquired severe aplastic anemia. The patient developed hyperpigmentation of the face, neck and chest region, arms, shoulders and legs. In addition, he had dry skin, deformed fingernails and toenails, sparse hair and eyebrows and hyperkeratosis of the dorsum of the hands and feet. Laboratory and histological analysis revealed severe pancytopenia and dyserythropoiesis of red blood cells, hypocellularity of white blood cells and decreased megakaryocytes with dysplasia. The intraoral examination identified bleeding gums; petechiae of the palate, tongue and cheek mucosa; and an atrophic, smooth and shining dorsal surface of the tongue. There were deep carious lesions in the deciduous mandibular molars and maxillary anterior teeth; as well as mobility of mandibular left canine, which had bone loss. The treatment for oral lesions included diet changes, improved oral hygiene, and extraction of the deciduous teeth destroyed by caries.
Resumo:
Introduction: The force delivered during rapid maxillary expansion (RME) produces areas of compression on the periodontal ligament of the supporting teeth. The resulting alveolar bone resorption can lead to unwanted tooth movement in the same direction. The purpose of this study was to evaluate periodontal changes by means of computed tomography after RME with tooth-tissue-borne and tooth-borne expanders. Methods: The sample comprised 8 girls, 11 to 14 years old, with Class I or II malocclusions with unilateral or bilateral posterior crossbites Four girls were treated with tooth-tissue-borne Haas-type expanders, and 4 were treated with tooth-borne Hyrax expanders. The appliances were activated up to the full 7-mm capacity of the expansion screw. Spiral CT scans were taken before expansion and after the 3-month retention period when the expander was removed. One-millimeter thick axial sections were exposed parallel to the palatal plane, comprising the dentoalveolar area and the base of the maxilla up to the inferior third of the nasal cavity. Multiplanar reconstruction was used to measure buccal and lingual bone plate thickness and buccal alveolar bone crest level by means of the computerized method. Results and Conclusions: RME reduced the buccal bone plate thickness of supporting teeth 0.6 to 0.9 mm and increased the lingual bone plate thickness 0.8 to 1.3 mm. The increase in lingual bone plate thickness of the maxillary posterior teeth was greater in the tooth-borne expansion group than in the tooth-tissue-borne group. RME induced bone dehiscences on the anchorage teeth's buccal aspect (7.1 ± 4.6 mm at the first premolars and 3.8 ± 4.4 mm at the mesiobuccal area of the first molars), especially in subjects with thinner buccal bone plates. The tooth-borne expander produced greater reduction of first premolar buccal alveolar bone crest level than did the tooth-tissue-borne expander. © 2006 American Association of Orthodontists.
Resumo:
Background: Many studies have shown that physical exercises are able to stimulate bone formation and increase bone mass, constituting a therapeutic modality to treat bone loss due to osteoporosis. However, some points about the intensity, duration and frequency of the exercises remain confusing and contradictory. Thus, the aim of this study was to determine the effects of a progressive loading exercise program on femur of osteopenic rats. To induce osteopenia we used the animal model of ovariectomy (OVX). Forty animals was studied and divided into 4 groups: sham-operated sedentary (SS); ovariectomy-sedentary (OS); sham-operated training (ST) and ovariectomy training (OT). The trained groups performed jumps into water: 4 series of 10 jumps each, with an overload of 50% to 80% of the animal's body weight, during 8 weeks. Femora were submitted to a physical properties evaluation, a biomechanical test, calcium and phosphorus content measurement and a morphometric histological evaluation. Results: osteopenic animals showed a decrease of bone strength and lower values of bone weights, bone density and calcium content. The exercised osteopenic rats showed higher values of geometrical, physical properties, bone strength and calcium content compared to controls. The results of the present study indicate that the progressive loading exercise program had stimulatory effects on femora of osteopenic rats. It seems that the intensity and duration of the protocol used produced bone structural adaptations, which contributed to reverse bone loss due to ovariectomy.
Resumo:
This article reports the 9-year clinical outcome of the two-stage surgical rehabilitation of a severely atrophic edentulous maxilla with a metal-resin fixed denture supported by implants anchored in the zygomatic bone and the maxilla. After clinical and radiographic examination, zygomatic implants were inserted bilaterally and four standard implants were placed in the anterior region of the maxilla. Six months later, the implants were loaded with a provisional acrylic resin denture, and the definitive implant-supported metal-resin fixed denture was provided 1 year after implant placement. After 9 years of follow-up, no painful symptoms, peri-implant inflammation or infection, implant instability, or bone resorption was observed. In the present case, the rehabilitation of severe maxillary atrophy using the zygomatic bone as a site for implant anchorage provided good long-term functional and esthetic results. Therefore, with proper case selection, correct indication, and knowledge of the surgical technique, the use of zygomatic implants associated with standard implants offers advantages in the rehabilitation of severely resorbed maxillae, especially in areas with inadequate bone quality and volume, without needing an additional bone grafting surgery, thereby shortening or avoiding hospital stay and reducing surgical morbidity.
Resumo:
Lumiracoxib is a selective inhibitor of cyclooxygenase-2 (COX-2) approved for the relief of symptoms of chronic inflammatory conditions. The aim of this study was to evaluate the effects of this specific inhibitor of COX-2 as adjunctive treatment on induced periodontitis in rats. Periodontal disease was induced at the first mandibular molar of 60 rats. After 7 days, the ligature was removed and all animals were submitted to scaling and root planing (SRP) along with local irrigation with saline solution and were divided into 2 groups: SRP (n = 30)-received subcutaneous injections of 1 mg/kg of body weight/day of saline solution for 3 days and; SRP + L (n = 30)-received subcutaneous injections of 1 mg/kg of body weight/day of Lumiracoxib for 3 days. Ten animals in each group were killed at 7, 15, and 30 days. The histological description was performed and the histometric values were statistically analyzed. In Group SRP + L, the histometric analysis (0.58 ± 0.08, 0.64 ± 0.06, and 0.56 ± 0.10 mm 2) showed less bone loss (p < 0.05) than Group SRP (1.52 ± 0.08, 1.55 ± 0.09, and 1.49 ± 0.24 mm 2) at 7, 15, and 30 days, respectively. Within the limits of this study it can be concluded that subcutaneous application of specific inhibitor of COX-2 was a beneficial adjunctive treatment for periodontal diseases induced in rats. © 2010 Springer Basel AG.
Resumo:
The aim of this study was to histologically and histometrically evaluate the influence of repeated adjunctive antimicrobial photodynamic therapy (aPDT) on bone loss (BL) in furcation areas in rats. Periodontitis was induced by placing a ligature around the mandibular molar in 75 rats. The animals were divided into five groups: the SS group was treated with saline solution (SS); the SRP group received scaling and root planing (SRP); the aPDT1 group received SRP as well as toluidine blue (TBO) and low-level laser therapy (LLLT; InGaAlP, 660 nm; 4.94 J/cm2/point) postoperatively at 0 h; the aPDT2 group received SRP as well as TBO and LLLT postoperatively at 0, 24, 28, and 72 h; and the aPDT3 group received SRP, TBO, and LLLT postoperatively at 0, 48, 96, and 144 h. The area of BL in the furcation region of the molar was histometrically analyzed. Data were analyzed statistically (P < 0.05). Animals treated with a single episode of aPDT showed less BL at days 7 and 30 than those who received only SRP treatment. No significant differences were found among the aPDT groups (P > 0.05). Repeated aPDT did not improve BL reduction when compared to a single episode of aPDT. © 2012 Springer-Verlag London Ltd.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on bone formation at buccal alveolar dehiscence defects. Material and Methods: In six Labrador dogs the pulp tissue of the mesial roots of 4P4 was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned and the distal roots removed. The implants were placed in contact with either the buccal (test site) or with the lingual (control site) bony wall of the extraction sockets. Healing abutments were affixed and triangular buccal bony dehiscence defects, about 2.7 mm deep and 3.5 mm wide, were then prepared. No regenerative procedures were done and a non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment. Results: After 4 months of healing, the bony crest and the coronal border of osseointegration at the test sites were located 1.71 ± 1.20 and 2.50 ± 1.21 mm apically to the implant shoulder, respectively. At the control sites, the corresponding values were 0.68 ± 0.63 and 1.69 ± 0.99 mm, respectively. The differences between test and control reached statistical significance (P < 0.05). Residual marginal bone defects were found both at the test and control sites. A statistically significant difference between test and control sites was only found at the lingual aspects (depth 2.09 ± 1.01 and 1.01 ± 0.48 mm, respectively). Similar heights of the buccal biological width were observed at both sites (about 5.1 mm). Conclusions: The placement of implants in a lingual position of the extraction sockets allowed a higher degree of bone formation at buccal alveolar dehiscence defects compared with a buccal positioning. © 2012 John Wiley & Sons A/S.