126 resultados para electron paramagnetic resonance
Resumo:
We report the absolute values of the c ̂-axis resistivity obtained from conduction electron spin resonance (CESR) experiments at various temperatures for a graphite-AlCl3 stage 2 compound. The agreement with d.c. measurements is quite good. The temperature dependence of the c ̂-axis resistivity previously obtained from CESR for graphite-AlCl3 is revised. © 1990.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.