157 resultados para degradation of azo dye


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development of the textile industry, there has been a demand for dye removal from contaminated effluents. In recent years, attention has been directed toward various natural solid materials that are capable of removing pollutants from contaminated water at low cost. One such material is sugarcane bagasse. The aim of the present study was to evaluate adsorption of the dye Acid Violet Alizarin N with different concentrations of sugarcane bagasse and granulometry in agitated systems at different pH. The most promising data (achieved with pH 2.5) was analyzed with both Freundlich and Langmuir isotherms equations. The model that better fits dye adsorption interaction into sugarcane bagasse is Freundlich equation, and thus the multilayer model. Moreover, a smaller bagasse granulometry led to greater dye adsorption. The best treatment was achieved with a granulometry value lower than 0.21 mm at pH 2.50, in which the total removal was estimated at a concentration of 16.25 mg mL(-1). Hence, sugarcane bagasse proves to be very attractive for dye removal from textile effluents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procion red HE-3B (RR120) is an example of dye currently used in affinity purification. A method is described for determining trace amounts of RR120 dye contaminant in human serum albumin by cathodic stripping voltammetry. The method is based on a measure of a well-defined peak at -0.58 V, obtained when samples of HSA protein (0.01-2% w/v) containing dye concentrations are submitted to a heating time of 330 min at 80degreesC in NaOH, pH 12.0 and the samples are removed to a solution containing Britton-Robinson buffer, pH 4.0. Using an optimum accumulation potential and tune of 0 V and 240 s, respectively, linear calibration curves were obtained from 1.0 X 10(-9) to 1.0 X 10(-8) mol 1(-1) for RR120 dye. Leakage/hydrolysis of reactive red 120 from an agarose support (e.g. at pH 2 or 12) can also be conveniently determined at very low levels (sub-mug ml(-1)) by means of cathodic stripping voltammetry, which involves adsorptive accumulation of the dye onto the hanging mercury-drop electrode. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical and thermo-oxidative degradation of high density polyethylene (HDPE) was measured in a twin-screw extruder using various processing conditions. Two types of HDPE, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturation were analysed. Mild screw profiles, having mainly conveying elements, have short mean residence times then profiles with kneading discs and left hand elements. Carbonyl and traps-vinylene group concentrations increased, whereas vinyl group concentration decreased with number of extrusions. Higher temperature profiles intensified these effects. The thermo-mechanical degradation mechanism begins with chain scission in the longer chains due to their higher probability of entanglements. These macroradicals then react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the levels of extrusion temperature, shear and vinyl end groups content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than does the Ziegler-Natta type. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidative and thermo-mechanical degradation of HDPE was studied during processing in an internal mixer under two conditions: totally and partially filled chambers, which provides lower and higher concentrations of oxygen, respectively. Two types of HDPEs, Phillips and Ziegler-Natta, having different levels of terminal vinyl unsaturations were analyzed. Materials were processed at 160, 200, and 240 degrees C. Standard rheograrns using a partially filled chamber showed that the torque is much more unstable in comparison to a totally filled chamber which provides an environment depleted of oxygen. Carbonyl and transvinylene group concentrations increased, whereas vinyl group concentration decreased with temperature and oxygen availability. Average number of chain scission and branching (n(s)) was calculated from MWD curves and its plotting versus functional groups' concentration showed that chain scission or branching takes place depending upon oxygen content and vinyl groups' consumption. Chain scission and branching distribution function (CSBDF) values showed that longer chains undergo chain scission easier than shorter ones due to their higher probability of entanglements. This yields macroradicals that react with the vinyl terminal unsaturations of other chains producing chain branching. Shorter chains are more mobile, not suffering scission but instead are used for grafting the macroradicals, increasing the molecular weight. Increase in the oxygen concentration, temperature, and vinyl end groups' content facilitates the thermo-mechanical degradation reducing the amount of both, longer chains via chain scission and shorter chains via chain branching, narrowing the polydispersity. Phillips HDPE produces a higher level of chain branching than the Ziegler-Natta's type at the same processing condition. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high performance liquid chromatography ( HPLC) method with electrochemical detection (ED) was developed for the determination of benzidine, 3,3-dimethylbenzidine, o-toluidine and 3,3-dichlorobenzidine in the wastewater of the textile industry. The aromatic amines were eluted on a reversed phase column Shimadzu Shimpack C-18 using acetonitrile + ammonium acetate (1 x 10(-4) mol L-1) at a ratio 46: 54 v/v as mobile phase, pumped at a flow rate of 1.0 mL min(-1). The electrochemical oxidation of the aromatic amines exhibits well-defined peaks at a potential range of +0.45 to +0.78 V on a glassy carbon electrode. Optimum working potentials for amperometric detection were from 0.70 V to +1.0 V vs. Ag/AgCl. Analytical curves for all the aromatic amines studied using the best experimental conditions present linear relationship from 1 x 10(-8) mol L-1 to 1.5 x 10(-5) mol L-1, r = 0.99965, n = 15. Detection limits of 4.5 nM (benzidine), 1.94 nM (o-toluidine), 7.69 nM (3,3-dimethylbenzidine), and 5.15 nM (3,3-dichlorobenzidine) were achieved, respectively. The detection limits were around 10 times lower than that verified for HPLC with ultra violet detection. The applicability of the method was demonstrated by the determination of benzidine in wastewater from the textile industry dealing with an azo dye processing plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the alignment induced on a nematic liquid crystal (LC) by a photo-aligned polymer film with azo-dye side groups. The orientation of the LC molecules can be manipulated in a reversible manner by irradiating the film with polarized light. We analyzed the competition between the orientation induced by the main chain, through rubbing of the film and that induced by the photo-aligned polymer. Anchoring strength for the different processing conditions are reported. The changes in film morphology caused by rubbing or photo-alignment could be captured by atomic force microscopy. The reversibility of the photo-induced alignment and the competition between the two anchoring mechanisms may allow recording and erasing of information in a LC display.