483 resultados para cytogenetic
Resumo:
This paper describes the karyotype of Odontesthes regia by means of Giemsa staining, C-banding, to reveal the distribution of the constitutive heterochromatin, and by Ag-staining and fluorescent in situ hybridization (FISH), to locate ribosomal genes (rDNA). The chromosome diploid modal count in the species was 2n = 48. The karyotype is composed of one submetacentric pair (pair 1), 16 subtelocentric pairs (pairs 2 to 17), and 7 acrocentric pairs (pairs 18 to 24). With the exception of pair 1 it was not possible to classify the homologous chromosomes accurately because differences in chromosome size were too slight between adjacent pairs. The distribution of C-banded heterochromatin allowed for a more accurate matching of the majority of chromosomes of the subtelocentric series. Silver staining of metaphase spreads allowed for the identification of Nucleolus Organizer Regions (Ag-NOR) on pair 1. FISH experiments showed that 18S rDNA sequences were located, as expected, in the same chromosome pair identified as the Ag-NOR-bearing one.
Resumo:
Three sympatric species of Gymnotus from the Fundo stream, a small tributary of the Sapucai river, Minas Gerais State, Brazil, were studied in relation to their karyology. Gymnotus sylvius presented 2n=40 chromosomes (36 m/sm+4 st/a), Gymnotus sp. presented 2n=50 (26 m/sm+ 24 st/a) and Gymnotus paraguensis had 2n=54 (50 m/sm+4 st/a). C-banding demonstrated positively stained heterochromatic blocks in the centromeric position of few chromosomes on G. sylvius and in the centromeric region of all chromosomes on G. paraguensis samples. The nucleolus organizer region (NOR) was located on the short arm of one st chromosome pair in G. sylvius and Gymnotus sp., and in the interstitial position on the short arm of the pair number one and below the centromere on a third chromosome on G. paraguensis. The cytogenetic data obtained indicate that Gymnotus sp. represent a new Gymnotus specie with a karyotypic constitution never observed on others species from this genus. Some aspects related to the chromosome diversification of these Gymnotus are discussed. © 2007 The Japan Mendel Society.
Resumo:
Cytogenetic and random amplified polymorphic DNA analyses carried out in the species Leptodactylus podicipinus, L. ocellatus, L. labyrinthicus, and L. fuscus from rural and urban habitats of the northwest region of São Paulo State, Brazil, showed that the karyotypes (2n = 22), constitutive heterochromatin distribution and nucleolus organizer region (NOR) location did not differ between the populations from the two environments. The in situ hybridization with an rDNA probe confirmed the location of the NORs on chromosome 8 revealing an in tandem duplication of that region in one of the chromosomes of L. fuscus. DAPI showed that part of the C-band-positive heterochromatin is rich in AT, including that in the proximity the NORs in L. podicipinus and L. ocellatus. The molecular analyses showed that the two populations (urban and rural) of L. podicipinus and L. fuscus are similar from a genetic point of view. The urban and rural populations of species L. ocellatus and L. labyrinthicus showed differences in genetic structures, probably due to urbanization which interferes with the dispersion of those frogs. The marked differences observed between the two populations of L. ocellatus can be representing the cryptic condition of the species. Unweighted pair-group method of analysis and genetic distance analysis detected the genetic proximity between L. ocellatus and L. fuscus. The results indicate that there was no reduction in the genetic diversity in the populations from the urban environment; however, the survival of these frogs would not be guaranteed in the case of an increase in human impact especially for populations of L. labyrinthicus and L. ocellatus. ©FUNPEC-RP.
Resumo:
Triatomines are of great concern in public health because they are vectors of Chagas' disease. This study presents an analysis of the species Triatoma melanosoma. The cytogenetic characteristics of triatomines include holocentric chromosomes, post-reductional meiosis in the sex chromosomes and nucleolar fragmentation in the meiotic cycle. The methodology utilized consisted of the techniques of lacto-acetic orcein staining and silver ion impregnation. The organs analyzed were adult testicles. The results enabled to classify the chromosomes by number and size, being three large, eight medium and one small heterochromosome. The three largest chromosomes and the heterochromosomes showed heteropyknotic chromatin in meiosis. The heterochromosomes in 8.05% of the cells in metaphase I behaved as pseudobivalents, contrasting with 91.95% of the cells with individualized sex chromosomes, confirming the achiasmatic nature of these chromosomes. However, the pseudobivalents occurred prominently in metaphase II (78.38%), this fact probably is related to the post-reductional nature of the sex chromosomes. The nucleolus in T. melanosoma persisted until the diplotene phase after which it began to fragment. Nucleolar corpuscles were observed in metaphases I and II and during anaphases I and II, these characteristics being related to the phenomenon of nucleolar persistence. In the initial spermatids, peripheral silver ion impregnation occurred, which could be analogous to the pre-nucleolar corpuscles observed after fragmentation. Thus, this study extends our knowledge of the characteristics of triatomines, in particular, heteropyknotic degree, kinetic activity, formation of sex chromosome achiasmatic pseudobivalency, confirmation of the fragmentation phenomenon, and post-meiotic nucleolar reactivation. ©FUNPEC-RP.
Resumo:
The nucleolar material of Chariesterus armatus was analyzed during spermiogenesis in cell preparations impregnated with silver nitrate. Nucleolar corpuscles were observed in spermatids at the beginning of the process, showing that this organoid is also maintained after meiosis. In addition, nucleoli were seen in the round spermatids connected to the X-chromosome (bearer of the nucleolar organizer in C. armatus), indicating de novo synthesis of nucleolar material. This differs from the reorganization of ribosomal granules, transported from meiotic spermatocytes to round spermatids, where they would support protein synthesis, which is reported for other species. We also observed connections of nucleolar corpuscles to the nuclear membrane regions where the tail and the acrosome will be formed, suggesting close involvement of the nucleolar material in the formation of these structures. In addition to the nucleolar bodies, we detected silver-positive structures, which will require new approaches to clarify their role. One of these structures, observed in the cytoplasm, appears to correspond to the chromatoid body, which has been found in several organisms, but is still poorly understood; another is a complex structure to which the tail appears to be connected. We conclude that C. armatus is an appropriate model for understanding not only the synthesis of rRNA in the spermiogenesis, but also the functional meaning of the close relationship of nucleolar material with other structures during this process.
Resumo:
Thoracocharax stellatus (Characiformes, Gasteropelecidae) is a small Neotropical species of fish, widely distributed in several rivers of South America. Evidence for karyotype heteromorphysm in populations from different geographical regions has been reported for this species. In this way, populations of T. stellatus from the Paraguay River basin were cytogenetically characterized and the results were compared with other studies performed in the same species but from different basins. The results showed a diploid number of 2n = 54 for T. stellatus, with chromosomes arranged in 6 metacentric (m), 6 submetacentric (sm), 2 subtelocentric (st) and 40 acrocentric (a), for both sexes, with a simple Nucleolus Organiser Region (NOR) system reported by the techniques of silver nitrate impregnation and fluorescent in situ hybridisation (FISH) using 18S rDNA sequences as probe. The distribution of constitutive heterochromatin, observed by the C-band technique and Chromomycin A3 staining showed great similarity among the analyzed populations and consists mainly of discrete blocks in the pericentromeric and telomeric regions of most chromosomes. The presence of female heterogamety was alsoobserved indicating a ZZ/ZW system with W chromosome almost totally heterochromatic. The results also show cytogenetic diversity of the group and are useful to understand the mechanisms of karyotype evolution of the family. © Edson Lourenço da Silva et al.
Resumo:
Few species of the tribe Lophiohylini have been karyotyped so far, and earlier analyses were performed mainly with standard staining. Based on the analysis of seven species with use of routine banding and molecular cytogenetic techniques, the karyotypes were compared and the cytogenetic data were evaluated in the light of the current phylogenies. A karyotype with 2n = 24 and NOR in the chromosome 10 detected by Ag-impregnation and FISH with an rDNA probe was shared by Aparasphenodon bokermanni Miranda-Ribeiro, 1920, Itapotihyla langsdorffii (Duméril and Bibron, 1841), Trachycephalus sp., T. mesophaeus (Hensel, 1867), and T. typhonius (Linnaeus, 1758). Phyllodytes edelmoi Peixoto, Caramaschi et Freire, 2003 and P. luteolus (Wied-Neuwied, 1824) had reduced the diploid number from 2n = 24 to 2n = 22 with one of the small-sized pairs clearly missing, and NOR in the large chromosome 2, but the karyotypes were distinct regarding the morphology of chromosome pairs 4 and 6. Based on the cytogenetic and phylogenetic data, it was presumed that the chromosome evolution occurred from an ancestral type with 2n = 24, in which a small chromosome had been translocated to one or more unidentified chromosomes. Whichever hypothesis is more probable, other rearrangements should have occurred later, to explain the karyotype differences between the two species of Phyllodytes Wagler, 1830. The majority of the species presented a small amount of centromeric C-banded heterochromatin and these regions were GC-rich. The FISH technique using a telomeric probe identified the chromosome ends and possibly (TTAGGG)n-like sequences in the repetitive DNA out of the telomeres in I. langsdorffii and P. edelmoi. The data herein obtained represent an important contribution for characterizing the karyotype variability within the tribe Lophiohylini scarcely analysed so far. © Simone Lilian Gruber et al.
Resumo:
A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.
Resumo:
The Amazonian brown brocket Mazama nemorivaga (Cuvier, 1817) is a small to medium-sized deer from the Amazon rainforest and ecotones. The first karyotype described was 2n=67 to 69 + 2-7 B and FN= 69-72, in which all chromosomes were acrocentric and the X chromosome was the only submetacentric chromosome. However, important aspects of the species chromosome evolution were not resolved because of the lack of information on chromosome banding. The G-banding pattern of M. nemorivaga karyotype showedthe presence of an XX/XY1Y2 sex chromosome system as a product of an X-autosome tandem fusion, which results in a basic 2n=68, FN=70 in females and 2n= 69, FN=70 in males. The fact that this karyotype only differs from that of Capreolus capreolus pygargus (Pallas, 1771; 2n=70, FN=72+B) by X-autosome tandem fusion may corroborate the basal condition of M. nemorivaga and its proximity to the ancestral karyotype of the American Odocoileini. A derived karyotype 2n=67, XY1Y2, FN=70 + 3B from the Brazilianstate of Mato Grosso (the western Amazon) may be evidence of differentiation between western and eastern populations. © Bruno Ferreto Fiorillo et al.
Resumo:
The recently described taxon Drymoreomys albimaculatus is endemic to the Brazilian Atlantic Forest and its biology and genetics are still poorly known. Herein, we present, for the first time, the karyotype of the species using classical and molecular cytogenetics, which showed 2n=62, FN=62, and interstitial telomeric signals at the sex chromosomes. Nuclear and mitochondrial DNA sequences from the two karyotyped individuals verify the taxonomic identity as the recently described D. albimaculatus and confirm the relationship of the species with other Oryzomyini. Additionally, external morphological information is provided. © Elkin Y. Suárez-Villota et al.
Resumo:
The aim of this study was to isolate, culture, and characterize mesenchymal stem cells (MSCs) from horse bone marrow (BM) using the techniques of flow cytometry, immunocytochemistry, cytogenetics, and electron microscopy. Immunophenotypic analysis revealed the presence of MSCs with high expression of the CD90 marker, lower expression of the CD44 marker, and absent expression of the CD34 marker. In assays of differentiation, the positive response to osteogenic (OST), chondrogenic (CDG), and adipogenic (ADP) differentiation signals was observed and characterized by deposition of calcium-rich extracellular matrix (OST), proteoglycans and collagen II (CDG) and intracellular deposition of fat drops (ADP). In immunocytochemical characterization, MSCs were immunopositive for CD44, vimentin, and PCNA, and they were negative for CD13. In the ultrastructural analysis of MSCs, the most outstanding characteristic was the presence of rough endoplasmic reticulum with very dilated cisterns filled with a low electrodensity material. Additionally, MSCs had normal karyotypes (2n=64) as evidenced by cytogenetic analysis, and aneuploidy in metaphase was not observed. The protocols for isolating, culturing, and characterizing equine MSCs used in this study were shown to be appropriate for the production of a cell population with a good potential for differentiation and without aneuploidy that can be used to study future cellular therapies. © 2013 Wiley Periodicals, Inc.
Resumo:
Background: Dendropsophus is a monophyletic anuran genus with a diploid number of 30 chromosomes as an important synapomorphy. However, the internal phylogenetic relationships of this genus are poorly understood. Interestingly, an intriguing interspecific variation in the telocentric chromosome number has been useful in species identification. To address certain uncertainties related to one of the species groups of Dendropsophus, the D. microcephalus group, we carried out a cytogenetic analysis combined with phylogenetic inferences based on mitochondrial sequences, which aimed to aid in the analysis of chromosomal characters. Populations of Dendropsophus nanus, Dendropsophus walfordi, Dendropsophus sanborni, Dendropsophus jimi and Dendropsophus elianeae, ranging from the extreme south to the north of Brazil, were cytogenetically compared. A mitochondrial region of the ribosomal 12S gene from these populations, as well as from 30 other species of Dendropsophus, was used for the phylogenetic inferences. Phylogenetic relationships were inferred using maximum parsimony and Bayesian analyses.Results: The species D. nanus and D. walfordi exhibited identical karyotypes (2n = 30; FN = 52), with four pairs of telocentric chromosomes and a NOR located on metacentric chromosome pair 13. In all of the phylogenetic hypotheses, the paraphyly of D. nanus and D. walfordi was inferred. D. sanborni from Botucatu-SP and Torres-RS showed the same karyotype as D. jimi, with 5 pairs of telocentric chromosomes (2n = 30; FN = 50) and a terminal NOR in the long arm of the telocentric chromosome pair 12. Despite their karyotypic similarity, these species were not found to compose a monophyletic group. Finally, the phylogenetic and cytogenetic analyses did not cluster the specimens of D. elianeae according to their geographical occurrence or recognized morphotypes.Conclusions: We suggest that a taxonomic revision of the taxa D. nanus and D. walfordi is quite necessary. We also observe that the number of telocentric chromosomes is useful to distinguish among valid species in some cases, although it is unchanged in species that are not necessarily closely related phylogenetically. Therefore, inferences based on this chromosomal character must be made with caution; a proper evolutionary analysis of the karyotypic variation in Dendropsophus depends on further characterization of the telocentric chromosomes found in this group. © 2013 Medeiros et al.; licensee BioMed Central Ltd.
Resumo:
Background: Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype.Results: Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids.Conclusions: All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype. © 2013 Gruber et al.; licensee BioMed Central Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The genus Pseudoplatystoma includes catfish species distributed throughout the fresh waters of South America. These species are important fisheries resources and play a significant ecological role due to their piscivorous and migratory habits. The taxonomy of this genus is still debated: traditionally, only three species have been recognised, but recently, this number was raised to eight. The validity of these eight morphospecies, however, was not confirmed by two subsequent molecular phylogenetic studies, which identified either five or four main clades. In this study, we focused on the two morphospecies restricted to the Orinoco basin, P. metaense and P. orinocoense, which have been assigned to either the same or different clades in previous studies. We carried out cytogenetic analyses to describe their unknown karyotypes and to look for cytotaxonomic markers. We also analysed their mitochondrial sequences in order to assign the sampled specimens to the previously identified molecular clades. The two presumptive species show similar karyotypes (2n=56, 42 biarmed and 14 uniarmed chromosomes) and cytogenetic features in terms of the constitutive heterochromatin distribution and the number and location of minor and major ribosomal genes. Thus, no species-specific chromosome markers could be identified. The analysis of cytochrome b and cytochrome oxidase I mitochondrial genes (carried out by retrieving all the mtDNA Pseudoplatystoma sequences available in GenBank) distributed the sampled specimens into two distinct molecular clades and confirmed the need to re-evaluate, by parallel morphological and molecular analyses, the monophyly of some lineages.