169 resultados para clot lysis
Resumo:
AimTo describe the sequential healing of open extraction sockets at which no attempts to obtain a primary closure of the coronal access to the alveolus have been made.Material and methodsThe third mandibular premolar was extracted bilaterally in 12 monkeys, and no sutures were applied to close the wound. The healing after 4, 10, 20, 30, 90 and 180days was morphometrically studied.ResultsAfter 4days of healing, a blood clot mainly occupied the extraction sockets, with the presence of an inflammatory cells' infiltrate. A void was confined in the central zones of the coronal and middle regions, in continuity with the entrance of the alveoli. At 10days, the alveolus was occupied by a provisional matrix, with new bone formation lining the socket bony walls. At 20days, the amount of woven bone was sensibly increasing. At 30days, the alveolar socket was mainly occupied by mineralized immature bone at different stages of healing. At 90 and 180days, the amount of mineralized bone decreased and substituted by trabecular bone and bone marrow. Bundle bone decreased from 95.5% at 4days to 7.6% at 180days, of the whole length of the inner alveolar surface.ConclusionsModeling processes start from the lateral and apical walls of the alveolus, leading to the closure of the socket with newly formed bone within a month from extraction. Remodeling processes will follow the previous stages, resulting in trabecular and bone marrow formation and in a corticalization of the socket access.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Linguística e Língua Portuguesa - FCLAR
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work assessed the performance of membranes made of natural latex extracted from Hevea brasiliensis prepared with three different methods: polymerized immediately after collection without the use of ammonia (L1); polymerized after preservation in ammonia solution (L2); and polymerized after storage in ammonia, followed by Soxhlet technique for the extraction of substances (L3). Polytetrafluoroethylene (PTFE) membrane was used as control. Two 10-mm diameter bone defects were surgically made in the calvaria of thirty adult male New Zealand rabbits. Defects (total n = 60) were treated with guided bone regeneration (GBR) using L1, L2, L3 or PTFE membranes (n = 15 for each membrane). Ten animals were euthanized after 7, 20 and 60 days postoperatively so that five samples (n = 5) of each treatment were collected at each time, and bone regeneration was assessed microscopically. The microscopic analysis revealed defects filled with blood clot and new bone formation at the margins of the defect in all 7-day samples, while 20-day defects were mainly filled with fibrous connective tissue. After 60 days defects covered with L1 membranes showed a significantly larger bone formation area in comparison to the other groups (P < 0.05, ANOVA, Tukey). Additionally, bone tissue hypersensitization for L1 and PTFE membranes was also investigated in six additional rabbits. The animals were subjected to the same surgical procedure for the confection of one 10-mm diameter bone defect that was treated with L1 (n = 3) or PTFE (n = 3). Fifty-three days later, a second surgery was performed to make a second defect, which was treated with the same type of membrane used in the first surgery. Seven days later, the animals were euthanized and samples analyzed. No differences among L1 and PTFE samples collected from sensitized and non-sensitized animals were found (P > 0.05, Kruskal-Wallis). Therefore, the results demonstrated that latex membranes presented performance comparable to PTFE membranes, and that L1 membranes induced higher bone formation. L1 and PTFE membranes produced no hypersensitization in the bone tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inflammation is an immune complex-related tissue damage and / or cell caused by chemical, physical, immunological or microbial. The inflammatory process involves a complex cascade of biochemical and cellular events, including awareness and receptor activation, lysis and tissue repair. In general, tissue damage trigger a local inflammatory response by recruiting leukocytes, which release inflammatory mediators. These substances are able to sensitize nociceptors. After synaptic transmission and signal modulation by nociceptive sensory neurons, these signals are perceived as pain. Pain is an experience that involves multiple factors. The route of the supraspinal pain control originates in many brain regions, such as substance periarquedutal gray (PAG), median raphe nucleus and rostral ventromedial medulla (RVM) and have a critical role in determining the chronic and acute pain. Anti-inflammatory drugs (NSAIDs) are used to control inflammation, which inhibit the inflammatory mediators, but can cause side effects such as stomach ulcers and cardiovascular damage. An alternative for the treatment of pain and inflammation is the use of plant species. The genus Eugenia belongs to the family Myrtaceae, one of the largest botanical families of expression in the Brazilian ecosystems. From the pharmacological point of view, studies of similar species crude extracts showed the presence of anti-inflammatory, analgesic, antifungal, hypotensive, antidiabetic and antioxidant activity of some species. As a class of importance in therapeutic phytochemical, the flavonoids has represented an important group with significant anti-inflammatory and gastroprotective, and are present in a significant way in the chemical composition of genus Eugenia. The project´s overall objective is to evaluate the antinociceptive and anti-inflammatory activities from hydroalcoholic extract of leaves of Eugenia punicifolia (EHEP). In this work we performed acute toxicity ...
Resumo:
Biological activities of flavonoids have been extensively reviewed in literature. The biochemical profile of afzelin, kaempferitrin, and pterogynoside acting on reactive oxygen species was investigated in this paper. The flavonoids were able to act as scavengers of the superoxide anion, hypochlorous acid and taurine chloramine. Although flavonoids are naturally occurring substances in plants which antioxidant activities have been widely advertised as beneficial, afzelin, kaempferitrin, and pterogynoside were able to promote cytotoxic effect. In red blood cells this toxicity was enhanced, depending on flavonoids concentration, in the presence of hypochlorous acid, but reduced in the presence of 2,20 -azo-bis(2-amidinopropane) free radical. These flavonoids had also promoted the death of neutrophils, which was exacerbated when the oxidative burst was initiated by phorbol miristate acetate. Therefore, despite their well-known scavenging action toward free radicals and oxidants, these compounds could be very harmful to living organisms through their action over erythrocytes and neutrophils.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA