158 resultados para Vida útil


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large electric motors require greater care when driving, especially during continuous operation since they are part of day-to-day manufacturing sector, acting essentially to ensure that no damage occurs to the production process and equipment that are part of the same system. This work includes the analysis of electrical protection in a system comprised of a three phase induction motor driven by a frequency converter as well as an analysis of the functions of a multifunction electronic relay. It is presented a comparison between the existing functions in a converter and a relay and a real case is described in order to exemplify the use of an electric motor and features that are aimed at their protection, and the system in which it is inserted. Based on the results, it is of great importance in this field of performance studies, generating relevant results, which may be exposed in order to unify into a single document, different sources of information that are arranged randomly, improve utilization motor and extend the life of equipment forming part of the electrical installation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biomass gasification systems have been used for a long time and prove to be a good alternative to the generation of energy problems. This type of management requires a simple installation and maintenance which gives them a high availability. In Biomass project via Call CTEnerg 33/2006-1, funded by the Ministry of Science and Technology - MCT - Brazil, the Group Energy Systems Optimization – GOSE - at FEG - UNESP built and tested two prototypes of gasifiers. These is fed with 25 kg / h of dry wood (chips), and 50 Nm3 / h of air to produce gas at a flow rate of approximately 70 Nm3 / h of wood (syngas) at a temperature approximately 600 ° C. In this work of graduation, studies were conducted on the materials used in both the gasifier as well as cleaning the filter synthesis gases. The system of gas cleaning and conditioning is vital to ensure the life of the Internal Combustion Engine. In this case the studies of different filters for small gasification systems (properties, materials used, characteristics, types, etc.) are very relevant to its use in the prototype of the college campus. Were also performed a technical and economic analysis of a cogeneration system that consists in the combination of the downdraft gasifier studied in this work, an internal combustion engine, two heat exchangers and a SRA (absorption system refrigerator). Were calculated the costs of electricity generation, hot water and cold water. Finally, we analyzed the economic feasibility of the project

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current competitiveness of the market has generated the need to minimize the cost of production companies in any field of activity, aimed at reducing the cost of production, the cost of purchasing and manufacturing processes interruption of manufacturing processes for possible maintenance. In this sense, companies are seeking methods to improve and streamline their production line. In ceramics industries, cooking the pieces is the portion of the production process that influences the total costs. The oven construction and maintenance represent a large portion embedded in the cost of the final ceramic product. The proposal for a type of oven for baking the parts that takes into account a better burning process, knowledge of the causes of disease and cost analysis of purchasing both of the constituent materials and labor for its construction, can be significant importance to the composition of final product costs or time analysis of ROI. It is proposed a streamlined design of an oven that takes into account the positive characteristics of the furnaces already built and that the experience has endorsed, and also others that are added at the end, lead to a reduction in production cost, the cost income and the number of pathologies arising from wear of the furnace along the lifespan. Therefore, according to the experiences gained over the years in the construction of furnaces and experience of manufacturing of ceramic, it is proposed a project that has an oven improvement over those now being built and that include, among other topics, economy in fuel burning, streamlining the building process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work is to analyze the viability of incorporation in a microcomputer box of a nobreak with an ultracapacitor as energy storage device, substituting the conventional chemical battery. An advantage of this inclusion is cost reduction because a specific metallic or plastic frame won’t be necessary to protect the components of the nobreak; the microcomputer metallic frame offers the necessary protection for both equipments. Moreover, a large quantity of internal space of microcomputers box isn’t used, and is possible to use it to wrap up the nobreak. This work uses data about average power consumption of microcomputers; operation of switching mode power supplies for microcomputers; electrical and mechanical characteristics of ultracapacitors and operation of power circuits of nobreaks, with the purpose of present a study of energy storage capacity that an ultracapacitor should have to allow a safe switching off of a microcomputer in case of electrical network fail. It was noticed that the use of ultracapacitors is feasible to feed an 180 W load for 75 s, using a capacitive bank with sixteen ultracapacitors, with a total capacitance of 350 F and voltage of 10,8 V. The use of the proposed nobreak increases the reliability of the microcomputer by reducing the probability of user data losses in case of an electrical network fail, offering a high cost/benefit product. The substitution of the battery by an ultracapacitor allows a quick nobreak recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, because they don’t use potentially toxic chemical compounds

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In civil engineering, a structure is the whole sustainment of a construction and, thus, it is important that it remains intact throughout its lifetime. An engineering construction must last for decades without losing its functionality. However its purpose may be altered and several times the original structure does not meet the new needs of use. Still, in new buildings, the functionality is altered due to possible flaws in execution and the structure, invariably does not reach the desired solicitation needs. In cases like this, the commonly adopted solutions are, basically, the demolishment followed by the reconstruction of the desired mold or the structural reinforcement. This second option, for long years, has not been put to practice due to certain factors such as the high costs for its implantation, use of inadequate reinforcement execution techniques, and the culture of people involved in the area regarding its use and, in this case, the option would always be the reconstruction. Thoughtout the years, some techniques were developed to allow the execution of structural reinforcements with low costs and in efficient ways. An interesting, fast, efficient and economical technique is the structural reinforcement through metal sheets put together with epoxy resin that can be applied in beams, slabs and pillars. In the present work the different behavior of beams reinforced with this technique. Steel is a very recommended material for these reinforcements due to its characteristics related to traction, compression and the effectiveness of the technique related to its cost. For the attachment the epoxy resin is recommended, since it allows the joining of two materials, in this case, steel and concrete. The efficiency of this union is so considerably high that it rarely produces any flaws in adherence and, normally, when it happens it is due to problems in the execution process, not in the union of materials

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the large number of pathologies in the civil constructions justified to highlight the reasons for problems encountered and subsequently the most appropriate way of implementing procedures for certain services performed in civil construction. The intention here is to explain each of the subjects studied, identify and distinguish the conditions presented in the post delivery of civil constructions from construction X, through research and company documents, and highlight steps of the executives of some services civilians highlighted in this work to minimize, or cancel, future maintenance. Studies will be conducted in a more narrow, focused more specifically in the most happening pathologies in the constructions and how to perform each service to prevent future problems with masonry (non-structural cracks and crevices), waterproofing, window frames and cladding. Thus, this study seeks to protect the building, using material technology and equipment, to allow an increase in the service time of the building,

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work examines the possible effects of successive repair procedures on the microstructure of welded steel SAE 4130 by TIG welding process. Discussions and results were made about the metallographic analysis , non-metallic inclusions and microhardness tests , which were conducted on samples taken from the cradle engine component after the end of its life , a model airplane T-27 Tucano , made by EMBRAER and belonging were performed FAB . The choice of such component is due to the fact that this is critical to flight safety since it provides support for the aircraft engine . Thus regions of the weld metal , base metal and heat affected , with samples of the original weld bead , free of weld bead and also with four rework procedures for TIG welding zone were analyzed . It was found that after the fourth rework there is an increase in the amount of martensite , which may weaken the material with respect to resistance to fatigue. It was also found that the regions of the heat affected zone and weld metal have higher microhardness values when compared to those found in the base metal due to favoring the formation of ferritic and tempered martensite microstructures . Moreover, a welding process promotes a region with less non-metallic inclusions than metal base , which also explains the difference in the results obtained

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper concerns about the durability of new material in construction. It is noteworthy the fact that increases increasingly searching for alternative materials that do not depend only of natural resources and at the same time be an alternative for reuse of industrial waste. Since the construction materials have a long life and a high cost of civil works and maintenance, it is crucial to estimate the behavior of a new product. Thus , this work discuss the durability of mixed mortar lining , made with waste from the process Kraft pulp production , known as dregs and grits , in partial replacement of sand. Tests were conducted to simulate conditions as adverse environments of constant heat and fire, with the aim of analyzing the behavior of mortar mixed matched the behavior of standard mortar

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deconstructions, although hardly covered in Civil Engineering courses, are a very important field of study. Due to numerous factors, such as obsolescence, buildings life cycle comes to an end leading to their deactivations. Decommissioning is a process that intends to plan the hole deactivation by providing the cleaning of contaminated areas, avoiding risks to public health, as well as promoting a screening of generated waste, whether dangerous or not, offering their correct disposal or even reuse when possible. Decommissioning must be developed by a plan that covers from the recognition of the area until its releases to other uses. When this procedure is appropriate, attention must be paid to the cost effective of its implementation and to the cleaning standard that the plan intends to reach. The execution of the service allows to reuse the area, becoming productive again

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Brazilian Environmental Data Collection System (Sistema Brasileiro de Coleta de Dados Ambientais - SBCDA) has been providing reliable information regarding the monitoring of the Brazil environment to INPE (Instituto Nacional de Pesquisas Espaciais) and many Non-governmental organizations (NGO). This system is composed of a large number of Data Collection Plataforms (DCP), in charge of sending local data signals to satellites. Then the satellites automatically redirect each signal to reception centers located at INPE. Nowadays the SBCDA has been operating under the control of three satellites. It is important to mention that two of these satellites have already expired their life span around ten years ago. A strategy to keep the SBCDA operational is to develop a low cost satellite that involves Brazilian Universities and Public Institutions. This graduation work aims to design and simulate a signal conditioning module that enables the collection of a satellite status data, and then sending it to an onboard computer

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human evolution has always been linked to personal or group needs. This statement is based on observations of the day to day. With time, we can now choose from among many excellent techniques and materials that can be employed in the construction of this part of the machinery so important to the functionality of machines and equipment. When we look at a machine, we see that this is usually designed by combining a set of pre-determined in your project. Among the many pieces that we can highlight one of them is of fundamental importance, the gear. Gears are an example of the mechanical devices used by the older man, and are currently the most important components in the transmission technique. This is responsible for transmitting rotary motion from one shaft to another. Gears are one of the best among the various means available for the transmission of motion. Gears are the most important components of modern technique of transmission. The main purpose of a transmission gear is precisely transmit torque and speed. The requirements have increased significantly due to pollution and energy conservation. Nowadays, gear transmissions are required to transmit high strength through all his life together with the high demand on performance and sound properties. An optimal design for the gear you need a set of the most modern fabrication machines and cutting tools. In the following work is studied on the manufacture of gears, making the monitoring of a case study of the try out the installation of a gear grinding machine

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The oil extraction in deep waters sparked new areas of knowledge, the creation of engineering courses dedicated just to these processes and a wide field of analysisvoiding multiple impacts in case of faults, mainly the economic and environmental. This paper aims to show on the effects and causes of fatigue failure in steel tubes used for oil and gastransportation (linepipe), mainly caused by vortex induced vibrations, or VIV. To make this, through laboratory tests, it found trough the curve Stress versus Number of Cycles, and thus estimating that with a stress value of 350 MPa or less, the fatigue life cycle of the API 5CT T95 (1% Cr) pipe is estimated infinite. It could conclude that the analyzed material has good fatigue failure resistance for offshore use, taking into account only the influence of VIV's, since there are no stress concentrators

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV