289 resultados para Treadmill Accommodation
Resumo:
Numerous functions have been attributed to the Edinger-Westphal nucleus (EW), including those related to feeding behavior, pain control, alcohol consumption and the stress response. The EW is thought to consist of two parts: one controls accommodation, choroidal blood flow and pupillary constriction, primarily comprising cholinergic cells and projecting to the ciliary ganglion; and the other would be involved in the non-ocular functions mentioned above, comprising peptide-producing neurons and projecting to the brainstem, spinal cord and prosencephalic regions. Despite the fact that the EW is well known, its connections have yet to be described in detail. The aim of this work was to produce a map of the hypothalamic sources of afferents to the EW in the rat. We injected the retrograde tracer Fluoro-Gold into the EW, and using biotinylated dextran amine, injected into afferent sources as the anterograde control. We found retrogradely labeled cells in the following regions: subfornical organ, paraventricular hypothalamic nucleus, arcuate nucleus, lateral hypothalamic area, zona incerta, posterior hypothalamic nucleus, medial vestibular nucleus and cerebellar interpositus nucleus. After injecting BDA into the paraventricular hypothalamic nucleus, lateral hypothalamic area and posterior hypothalamic nucleus, we found anterogradely labeled fibers in close apposition to and potential synaptic contact with urocortin 1-immunoreactive cells in the EW. On the basis of our findings, we can suggest that the connections between the EW and the hypothalamic nuclei are involved in controlling stress responses and feeding behavior. © 2013 The Authors.
Resumo:
Dynamic exercise evokes sustained cardiovascular responses, which are characterized by arterial pressure and heart rate increases. Although it is well accepted that there is central nervous system mediation of cardiovascular adjustments during exercise, information on the role of neural pathways and signaling mechanisms is limited. It has been reported that glutamate, by acting on NMDA receptors, evokes the release of nitric oxide through activation of neuronal nitric oxide synthase (nNOS) in the brain. In the present study, we tested the hypothesis that NMDA receptors and nNOS are involved in cardiovascular responses evoked by an acute bout of exercise on a rodent treadmill. Moreover, we investigated possible central sites mediating control of responses to exercise through the NMDA receptor-nitric oxide pathway. Intraperitoneal administration of the selective NMDA glutamate receptor antagonist dizocilpine maleate (MK-801) reduced both the arterial pressure and heart rate increase evoked by dynamic exercise. Intraperitoneal treatment with the preferential nNOS inhibitor 7-nitroindazole reduced exercise-evoked tachycardiac response without affecting the pressor response. Moreover, treadmill running increased NO formation in the medial prefrontal cortex (MPFC), bed nucleus of the stria teminalis (BNST) and periaqueductal gray (PAG), and this effect was inhibited by systemic pretreatment with MK-801. Our findings demonstrate that NMDA receptors and nNOS mediate the tachycardiac response to dynamic exercise, possibly through an NMDA receptor-NO signaling mechanism. However, NMDA receptors, but not nNOS, mediate the exercise-evoked pressor response. The present results also provide evidence that MPFC, BNST and PAG may modulate physiological adjustments during dynamic exercise through NMDA receptor-NO signaling. © 2013 Elsevier B.V.
Resumo:
Purpose: The aim of this study was to verify whether there is an association between anaerobic running capacity (ARC) values, estimated from two-parameter models, and maximal accumulated oxygen deficit (MAOD) in army runners. Methods: Eleven, trained, middle distance runners who are members of the armed forces were recruited for the study (20 ± 1 years). They performed a critical velocity test (CV) for ARC estimation using three mathematical models and an MAOD test, both tests were applied on a motorized treadmill. Results: The MAOD was 61.6 ± 5.2 mL/kg (4.1 ± 0.3 L). The ARC values were 240.4 ± 18.6 m from the linear velocity-inverse time model, 254.0 ± 13.0 m from the linear distance-time model, and 275.2 ± 9.1 m from the hyperbolic time-velocity relationship (nonlinear 2-parameter model), whereas critical velocity values were 3.91 ± 0.07 m/s, 3.86 ± 0.08 m/s and 3.80 ± 0.09 m/s, respectively. There were differences (P < 0.05) for both the ARC and the CV values when compared between velocity-inverse time linear and nonlinear 2-parameter mathematical models. The different values of ARC did not significantly correlate with MAOD. Conclusion: In conclusion, estimated ARC did not correlate with MAOD, and should not be considered as an anaerobic measure of capacity for treadmill running. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
BACKGROUND: Age-related loss in lower limb strength is related with impaired mobility. However, the association between decreased lower limb strength and gait biomechanical abnormalities is unclear. %In line with this, With respect to these statements, our study aimed to compare the maximum isokinetic voluntary strength (MIVS) of hip, knee and ankle of older women with and without history of falls. Also, we correlate the strength of each group with gait biomechanics. METHODS: The MIVS were assessed during concentric/concentric movements performed for hip, knee and ankle joints. Gait biomechanics (kinematic and electromyography) were assessed during 1-minute recorded during the volunteers walking on the treadmill at self-selected speed. Electromyographic signal was analyzed by the linear envelop after heel strike and before toe-off. The kinematic data were analyzed using the variables: step time, length and step width and ankle angle at heel strike, and hip angle at toe-off. RESULTS: In faller group, we found that a decreased hip abduction and adduction MIVS is associated with a higher tibialis anterior activation at initial stance (p =0.04 and r =-0.53 and p=0.04 and r=-0.52). CONCLUSION: Therefore, an impaired strength of hip could causes compensation in ankle stabilizer muscles activation at initial stance in older female fallers. © 2013 - IOS Press and the authors. All rights reserved.
Resumo:
AIM: To compare five different protocols for estimating the lactate minimum speed (LMS) with that for estimating the maximal lactate steady state (MLSS) in Arabian horses, in order to obtain a more rapid method for monitoring aerobic capacity and prescribing training schedules. METHODS: Eight purebred Arabian horses were conditioned to exercise on a treadmill for 12 days then submitted to three to five exercise sessions to determine the MLSS. Blood samples were collected from a jugular catheter at specific intervals for measurement of lactate concentrations. The MLSS was the velocity maintained during the last 20 minutes of constant submaximal exercise, at which the concentration of lactate increased by no more than 1.0 mmol/L. The LMS test protocols (P1 - P5) included a warm-up period followed by a high-intensity gallop. The speed was then reduced to 4 m/s, and the incremental portion of the test was initiated. In P1, P2, and P3, the velocity increment was 0.5 m/s, and the duration of each incremental stage was three, five and seven minutes, respectively. In P4 and P5, the velocity increments were 1.0 and 1.5 m/s, respectively, and the duration of the stages was fixed at five minutes each. A second-degree polynomial function was fitted to the lactate-velocity curve, and the velocity corresponding to the lowest concentration of lactate was the LMS. RESULTS: Only the mean LMS determined by P1 and P2 did not differ from the velocity determined by the MLSS test (p > 0.1). There was a strong correlation (r >0.6) between P1 and the MLSS velocity. A limits of agreement plot revealed that the best agreement occurred between the MLSS test and P1 (mean bias = 0.14 m/s), followed by P2 (bias = -0.22 m/s). The lactate concentrations associated with the various LMS protocols did not differ. CONCLUSIONS: This study shows the variation between protocols of the LMS test for determining the onset of blood lactate accumulation but also reveals that, at least for Arabian horses, the P1 protocol of the LMS has good agreement with the MLSS. © 2013 Copyright New Zealand Veterinary Association.
Resumo:
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. © 2013 Elsevier Ltd.
Resumo:
The aim of the study was to verify whether 8 weeks of resistance training employing maximal isokinetic eccentric (IERT) knee extensor actions would reduce the acute force loss observed after high-intensity treadmill running exercise. It was hypothesized that specific IERT would induce protective effects against muscle fatigue and ultrastructural damages, preventing or reducing the loss in mechanical muscle function after running. Subjects were tested before and after IERT protocol for maximal isometric, concentric and eccentric isokinetic knee extensor strength (60 and 180 s-1). In a second session, subjects performed treadmill running (~35 min) and the previously mentioned measurements were repeated immediately after running. Subsequently, subjects were randomized to training (n = 12) consisting of 24 sessions of maximal IERT knee extensors actions at 180 s-1, or served as controls (n = 8). The effects of acute running-induced fatigue and training on isokinetic and isometric peak torque, and rate of force development (RFD) were investigated. Before IERT, running-induced eccentric torque loss at 180 s-1 was -8 %, and RFD loss was -11 %. Longitudinal IERT led to reduced or absent acute running-induced losses in maximal IERT torque at 180 s-1 (+2 %), being significantly reduced compared to before IERT (p < 0.05), however, RFD loss remained at -11 % (p > 0.05). In conclusion, IERT yields a reduced strength loss after high-intensity running workouts, which may suggest a protective effect against fatigue and/or morphological damages. However, IERT may not avoid reductions in explosive muscle actions. In turn, this may allow more intense training sessions to be performed, facilitating the adaptive response to running training. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Objective: Investigate the influence of apprehensive gait on activation and cocontraction of lower limb muscles of younger and older female adults. Methods: Data of 17 younger (21.47±2.06 yr) and 18 older women (65.33±3.14. yr) were considered for this study. Participants walked on the treadmill at two different conditions: normal gait and apprehensive gait. The surface electromyographic signals (EMG) were recorded during both conditions on: rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), tibialis anterior (TA), gastrocnemius lateralis (GL), and soleus (SO). Results: Apprehensive gait promoted greater activation of thigh muscles than normal gait (F=5.34 and p=0.007, for significant main effect of condition; RF, p=0.002; VM, p<0.001; VL, p=0.003; and BF, p=0.001). Older adults had greater cocontraction of knee and ankle stabilizer muscles than younger women (F=4.05 and p=0.019, for significant main effect of groups; VM/BF, p=0.010; TA/GL, p=0.007; and TA/SO, p=0.002). Conclusion: Apprehensive gait promoted greater activation of thigh muscles and older adults had greater cocontraction of knee and ankle stabilizer muscles. Thus, apprehensive gait may leads to increased percentage of neuromuscular capacity, which is associated with greater cocontraction and contribute to the onset of fatigue and increased risk of falling in older people. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)