147 resultados para Structural and optical properties


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eletronicalceramics are used in many applications such as: multilayer capacitor, transducer, pyroelectric sensors and electrooptic devices. In recent years there has been a growing demand for eletronicalceramics with better performance and functionality. This demand has accelerated the development of synthesis techniques to produce powders with well-defined particle size, shape and crystallinity. The eletronicalceramics in the form of bulk are determined by their performance characteristics of the powders used and the preparation process. So, physical and chemical properties of powders, such as chemical control of stoichiometry, purity, homogeneity, particle size and shape should be observed when choosing the methods of synthesis. Among the techniques used so far, the polymeric precursor method, also known as Pechini, has been considered ideal for the preparation of nanosized powders. Thus, this research project aims to use the polymeric precursor method to prepare powders of lithium tantalate and lanthanum tantalate, with good chemical stability. In this aspect is proposed to investigate the effects of variation of the concentration of europium about the properties of tantalate because doping with Eu3 + indicates that they may occupy different sites in the crystal structure, as in the case of LiTaO3. Effects of things like occupation sites, stability of phases and formation temperature have been previously investigated by the group, which motivated the formulation of this project. Our proposal aims to introduce the Eu3 + LaTaO4 and LiTaO3 and study the structural and optical properties of the powders obtained by Pechini method, as well as correlate these studies with the electrical properties of the material, mainly the Ironelectricty Hysteresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the study of optical, structural and biocompatible properties of PEO-like plasma polymerized films resulting from RF excited diethylene glycol dimethyl ether (CH3O(CH2CH2O)(2)CH3 diglyme) glow discharges. The study was carried out using visible-ultraviolet and FTIR spectroscopies and contact angle measurements. FTIR spectra of plasma polymerized diglyme showed a stronger presence of ethylene glycol groups in film structure for lower RF power levels. The contact angle measurements for water revealed an increasing from 30degrees to 62,5degrees when the RF power was varied from 2 to 45 W, indicating the decreasing of the hydrophilic character of diglyme films with the increasing of RF power. This trend is in agreement with FTIR results. The data from visible-ultraviolet reflectance and transmittance spectra revealed alterations on optical properties of plasma polymerized diglyme films. The film's optical gap varied from 3.8 to 3 eV for RF power running from 5 to 45 W.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and optical characteristics of zein-based films produced with different xanthan gum concentrations have been studied in this work. Scanning electronic microscopy (SEM) and optical microscopy (OM) were performed to identify if the incorporation of the material into the matrix film, formed a homogeneous structure, as well as to characterize its constituents as the colour and shape. SEM showed a homogeneous matrix for the control (0% xanthan) with good lipid distribution. However, when the samples were investigated by OM, lipids globules in the control biofilm appeared larger and more dispersed in the matrix than the others samples. Transparency/opacity test measurements by UV-VIS analysis indicated that the addition of xanthan to the film matrix lowered significantly its transparency properties Overall, the addition of xanthan gum favoured lipid dispersion in the matrix, making biomaterials more homogeneous, although with less transparency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper describes the synthesis, characterization, structural refinement and optical absorption behavior of lead tungstate (PbWO(4)) powders obtained by the complex polymerization method heat treated at different temperatures for 2h in air atmosphere. PbWO(4) powders were characterized by X-ray diffraction (XRD), Rietveld refinement, Fourier transform Raman (FT-Raman) spectroscopy and ultraviolet visible (UV-vis) absorption spectroscopy measurements. XRD, Rietveld refinement and FT-Raman revealed that PbWO(4) powders are free of secondary phases and crystallizes in a tetragonal structure. The UV-vis absorption spectroscopy measurements suggest the presence of intermediary energy levels into the band gap of structurally disordered powders. (C) 2008 Elsevier B.V. All rights reserved.