164 resultados para Statistical models of Box-Jenkins. Artificial neural networks (ANN). Oil flow curve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages offered by the electronic component light emitting diode ( LED) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a method of identifying morphological attributes that classify wear particles in relation to the wear process from which they originate and permit the automatic identification without human expertise. The method is based on the use of Multi Layer Perceptron (MLP) for analysis of specific types of microscopic wear particles. The classification of the wear particles was performed according to their morphological attributes of size and aspect ratio, among others. (C) 2010 Journal of Mechanical Engineering. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a procedure for transient stability analysis and preventive control of electric power systems, which is formulated by a multilayer feedforward neural network. The neural network training is realized by using the back-propagation algorithm with fuzzy controller and adaptation of the inclination and translation parameters of the nonlinear function. These procedures provide a faster convergence and more precise results, if compared to the traditional back-propagation algorithm. The adaptation of the training rate is effectuated by using the information of the global error and global error variation. After finishing the training, the neural network is capable of estimating the security margin and the sensitivity analysis. Considering this information, it is possible to develop a method for the realization of the security correction (preventive control) for levels considered appropriate to the system, based on generation reallocation and load shedding. An application for a multimachine power system is presented to illustrate the proposed methodology. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Redes neurais pulsadas - redes que utilizam uma codificação temporal da informação - têm despontado como uma promissora abordagem dentro do paradigma conexionista, emergente da ciência cognitiva. Um desses novos modelos é a rede neural pulsada com função de base radial, que é capaz de armazenar informação nos tempos de atraso axonais dos neurônios. Um algoritmo de aprendizado foi aplicado com sucesso nesta rede pulsada, que se mostrou capaz de mapear uma seqüência de pulsos de entrada em uma seqüência de pulsos de saída. Mais recentemente, um método baseado no uso de campos receptivos gaussianos foi proposto para codificar dados constantes em uma seqüência de pulsos temporais. Este método tornou possível a essa rede lidar com dados computacionais. O processo de aprendizado desta nova rede não se encontra plenamente compreendido e investigações mais profundas são necessárias para situar este modelo dentro do contexto do aprendizado de máquinas e também para estabelecer as habilidades e limitações desta rede. Este trabalho apresenta uma investigação desse novo classificador e um estudo de sua capacidade de agrupar dados em três dimensões, particularmente procurando estabelecer seus domínios de aplicação e horizontes no campo da visão computacional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Economic Dispatch (ED) problems have recently been solved by artificial neural networks approaches. In most of these dispatch models, the cost function must be linear or quadratic. Therefore, functions that have several minimum points represent a problem to the simulation since these approaches have not accepted nonlinear cost function. Another drawback pointed out in the literature is that some of these neural approaches fail to converge efficiently towards feasible equilibrium points. This paper discusses the application of a modified Hopfield architecture for solving ED problems defined by nonlinear cost function. The internal parameters of the neural network adopted here are computed using the valid-subspace technique, which guarantees convergence to equilibrium points that represent a solution for the ED problem. Simulation results and a comparative analysis involving a 3-bus test system are presented to illustrate efficiency of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.