164 resultados para Saline water conversion plants
Resumo:
Germination of pelleted seeds of different lettuce cultivars was evaluated. The experimental design used was completely randomized, with four replications, in a factorial outline 5 x 4. Seeds of 'Elisa', 'Veronica AF 259', 'Vera' and 'Tainá' were tested. The sodium chloride (NaCl) concentrations used were 0; 50 Mm(2,9222 g/L); 100 Mm (5,8443 g/L); 150 Mm (8,7665 g/L); and 200 Mm (11,6886 g/L). Germination percentage, germination rate and number of normal seedling were evaluated. The concentration of 200 Mm of NaCl resulted in the lowest number of germinated plants. 'Veronica AF 259' germinated in the shortest time using a concentration of 150 Mn of NaCl.
Resumo:
Starting from the deregulated process of the Electric Sector, there was the need to attribute responsibilities to several agents and to elaborate appropriate forms of remuneration of the services rendered by the same. One of the services of great importance within this new electric sector is the Ancillary Services. Among the various types of Ancillary Services, Spinning Reserve is a service necessary for maintaining the integrity of the transmission system from either generation interruptions or load variations. This paper uses the application of the Economic Dispatch theory with the objective of quantifies the availability of Spinning Reserve supply in hydroelectric plants. The proposed methodology utilizes the generating units as well as their efficiencies so as to attend the total demand with the minimum water discharge. The proposed methodology was tested through the data provided by the Água Vermelha Hydroelectric Power Plant. These tests permitted the opportunity cost valuation to the Spinning Reserve supply in hydroelectric plants. © 2005 IEEE.
Resumo:
The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA), under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m -1, S1 = 0.6 dS m -1, S2 = 1.2 dS m -1, S3 = 1.8 dS m -1, S4 = 2.4 dS m -1 and S5 = 3.0 dS m -1) and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m -1 caused damage to plant development resulting, in some cases, in death of plants. The leaf area of plant was the variable most affected by salinity of irrigation water. By the end of the experiment, the soil was classified as saline-sodic.
Resumo:
The effects of salt concentration levels in electrical conductivity (EC) were evaluated in chrysanthemum root, cultivated in substrate using two sampling methods, under greenhouse conditions. The experiment was carried out in Paranapanema, São Paulo using the experimental design in randomized blocks and four replications. The treatments consisted of eight sampling periods of substrate solutions in pots: 7, 14, 21, 28, 35, 42, 49 and 56 days after strike root and five salt concentration levels of applied saline solution: 1.42; 1.65; 1.89; 2.13 and 2.36 dS m -1 in the vegetative period and during the reproduction period of flower budding: 1.71; 1.97; 2.28; 2.57 and 2.85 dS m -1. The substrate solution EC monitoring was done using two methods: solution extractors and 1:2 water diluted solution. The use of solution extractors and 1:2 water diluted solution allowed substrate solution EC monitoring along the culture cycle; the amount of salt concentration applied in the substrate caused the substrate salinity increase; the method using solution extractors presented higher EC values in the substrate.
Resumo:
Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.
Resumo:
The effect of post-polymerization treatments (MW-microwave irradiatron and WB-water-bath) on the degree of conversion (DC) of three reline resins (Ufi Gel hard-U, Kooliner-K, and Tokuso Rebase Fast-T) and one denture base resin (Lucitone 550-L), submitted to two polymerization cycles (LS-short and LL-long), was evaluated by using FT-Raman spectroscopy (n = 5). The molecular weight (Mw) of the powder of all materials and of K polymerized specimens (control; MW; and WB; n = 3) was analyzed using GPC. DC data were analyzed using Kruskal-Wallis test (α = .05). For control specimens, there were no significant differences between U (68%) and LL (77%) and among LL, K (81%), and T (84%). LS (92%) had the highest DC (P<0.05). Only material K exhibited an increased DC after WB (P<0.05). All powders had Mw from 4.0 × 105 to 6.5 × 105 and narrow Mw distributions (2.1 to 3.6). Polymerization and post-polymerization produced K specimens with Mw similar to that of K powder.
Resumo:
We determined the effects of AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), arginine vasopressin V 1 receptor antagonist as well as L-arginine, a nitric oxide donor and N W-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, injected into supraoptic nucleus (SON) on water and sodium intake induced by the injection of angiotensin II (ANGII). Male Holtzman rats weighing 200-250 g with canulae implanted into the SON were used. The drugs were injected in 0.5 μL over 30-60 sec. The water intake after injection of saline SAL+SAL 0.15 M NaCl was 0.40±0.1 mL 2 h -1; SAL+ANGII increase water intake. Losartan decreased the water intake induced by ANGII. PD123319 injected prior to produce no change in water intake induced by ANGII. AVPA prior to ANGII reduced the water intake with a less intensity than losartan. L-arginine prior to ANGII decreases the water intake at a same intensity than losartan. L-NAME prior to ANGII potentiated the dipsogenic effect of ANGII. Losartan injected simultaneously with L-arginine prior to ANGII blocked the dipsogenic effect of ANGII. These results confirm the importance of SON in the control of water intake and strongly suggest that AT 1, V 1 receptors interact with nitrergic pathways within the SON influencing the dipsogenic effect of ANGII.
Resumo:
The waters of Corumbataí River in the middle and eastern part of São Paulo State, Brazil, are extensively used for human consumption; their water quality has been modified mainly due to increasing pressure caused by population growth, accompanied by a more accentuated industrial development for the whole São Paulo State in the early 1970s. The Corumbataí River basin has, over time, received significant emissions of municipal waste products and discharges of wastewater, sludge, sewage, sanitary and industrial effluents, but the first effluent treatment plant at Rio Claro city was only inaugurated at the end of the 1990s. Data on river water quality from two widely spaced locations in the Corumbataí River basin are reported in this paper; they indicate the need for continuous initiatives and efforts by decision makers in order to improve and preserve the water quality in the basin for the 21st century. Copyright © 2007 IAHS Press.
Resumo:
The species Schizolobium amazonicum (Huber ex Ducke) commonly known as pinho-cuiabano or paricá, is one of the trees in Amazonian area used for plantings in degraded areas, reforestations and agroforestry systems. The present work evaluated the germinative behaviour of seeds of Schizolobium amazonicum in relation to the hydric stress, defining their levels of tolerance to those limitations in the environment. The seeds were collected from 30 trees in Alta Floresta-MT and submitted the dormancy treatment by submersion into water at 100°C for 1 minute; followed by treatment with fungicide Ridomil and Cercobin 0,25% each, then being left to germinate in a BOD camera at 30°C under a photoperiod of 12 hours. For evaluating the effect of different water potentials in the germinative process, polyethylene glicol (PEG 6000) was used and the salts NaCI and CaCl 2 used to simulate saline stress. The seeds were put to soak in potentials of 0 (control); -0.1 ; -0.2; -0.3; -0.4 and -0.5MPa. For each treatment 5 repetitions of 20 seeds were used in gerbox, placed between filter paper moistened with 20 mL of PEG, NaCI and CaCl 2 solutions. The solutions were changed at intervals of 24 hours for maintenance of the potential. The evaluations of percentages and germination speed were carry out daily for 8 days, being considered germinated the seeds that presented a 2mm root extension or longer. The data were submitted to analysis of variance and averages compared by the Tukey test at 5% probability. It was concluded that osmotic potentials between -0.4 and -0.5MPa inhibited the germination of seeds of Schizolobium amazonicum completely. The osmotic stress caused by CaCl 2, and PEG injured the germination more than did the stress caused by NaCl.
Resumo:
Aiming to evaluate the association of hydroponic lettuce cultivation with residues from a fish intensive breeding system, a project was carried out in the Aquaculture Center in the FCAV-UNESP at Jaboticabal, SP, Brazil. A closed system was designed in order to allow the water to circulate through the fish tanks, a clarifier tank for removal of residues, a reservoir for biological conversion of ammonia into nitrate, and the hydroponic system. After this process, water returned back to the fish tanks. Three varieties of lettuce, constituting the treatments with four repetitions were evaluated. The results of the chemical analysis of the residual water from the fish tanks indicated the presence of the majority of the mineral nutrients necessary for vegetable development. Their concentration was close to that found in nutrient solutions, used for lettuce hydroponic cultivation, except for potassium and magnesium. The low concentration of magnesium in the water did not prevent lettuce development, although the plants presented visual symptoms of deficiency of this nutrient. Differences were not found between the varieties produced, regarding productivity and the mean weight of fresh plants.
Resumo:
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43-84, 15-3,480, 2-133, 5-459, and 2-236 μg m-3 for benzene, toluene, ethylbenzene, m + p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (
Resumo:
Stevia rebaudiana is a traditional crop of Latin America, now rising to international interest thanks to its specific glycosides that are very sweet and still poor of calories making its potential interesting for dietary recommendations. Its short growing cycle makes this species possible as an annual crop also in non tropical areas, including the Mediterranean Basin and parts of Italy, where rainfall or irrigation is available during late spring and summer. One of the main concerns is the quantity of water necessary for the crop and the ideal number of plants per hectare in order to maximize water use efficiency. The present research was carried out in central Italy to compare yields and water consumption in plots with three plant densities (50, 25, 16 plants per square metre). The results show that the most dense plots can give the best results in the area of the trial.
Resumo:
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
In this paper, we report on a field experiment being carried out in a Typic Eutrorthox. The experiment was initiated in the 1997-98 agricultural season as a randomized block design with four treatments (0, 5, 10, and 20 t ha -1) of sewage sludge and five replicates. Compound soil samples were obtained from 20 subsamples collected at depths of 0-0.1 and 0.1-0.2 m. Cu, Fe, Mn, and Zn concentrations were extracted with DTPA pH 7.3; 0.1 mol L -1 HCl, Mehlich-I, Mehlich-III, and 0.01 mol L-1 CaCl 2. Metal concentrations were determined via atomic absorption spectrometry. Diagnostic leaves and the whole above-ground portion of plants were collected to determine Cu, Fe, Mn, and Zn concentrations extracted by nitric-perchloric digestion and later determined via atomic absorption spectrometry. Sewage sludge application caused increases in the concentrations of soil Cu, Fe, and Mn in samples taken from the 0-0.1 m depth evaluated by the extractants Mehlich-I, Mehlich-III, 0.01 mol L-1 HCl and DTPA pH 7.3. None of the extractants provided efficient estimates of changes in Mn concentrations. The acid extractants extracted more Cu, Fe, Mn, and Zn than the saline and chelating solutions. The highest concentrations of Cu, Fe, and Zn were obtained with Mehlich-III, while the highest concentrations of Mn were obtained with HCl. We did not observe a correlation between the extractants and the concentrations of elements in the diagnostic leaves nor in the tissues of the whole maize plant (Zea mays L.). © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The work was carried out at the College of Agricultural and Veterinary Sciences of the State University of São Paulo (UNESP/FCAV), Campus of Jaboticabal, Brazil, aiming to study the tolerance response to water stress and capacity of regeneration after mowing three different ornamental grasses used in Brazilian landscaping: Imperial zoysia grass (Zoysia japonica 'Imperial'), zoysia grass (Zoysia japonica) and St. Augustine grass (Stenotaphrum secundatum). The experimental design was entirely randomized in a factorial scheme 33 (three grass species: Zoysia japonica 'Imperial', Zoysia japonica and Stenotaphrum secundatum; in three water stress conditions: under full sun, with and without irrigation, and under greenhouse conditions without irrigation) with four replications per plot. The irrigation was performed using microsprinklers with a flow of 0.28 L s-1, and the grasses of all plots were mowed monthly. The evaluations were executed monthly, before mowing the grass, in the beginning of each season, that means, in October (for Spring evaluation), January (for Summer), April (for Autumn) and July (for Winter), considering the Brazilian climate conditions. The evaluated parameters were shoot height and total dry mass. The data were submitted to the variance analysis and the means were compared by the Tukey test at 5% confidence level. The grasses grown under greenhouse conditions, without irrigation, showed higher height and lower dry mass weight averages, what possibly indicates that the plants etiolated. The grasses grown under full sun, either with or without irrigation, showed a similar plant development. The S. secundatum species showed greater tolerance to water stress in October, month that followed the longest dry period. The total dry mass was gradually reduced during the experiment for all grasses grown under greenhouse conditions without irrigation; however, a great general tolerance to water stress was observed for all grasses because all of them survived along nine months without irrigation.