221 resultados para SULFATED ZIRCONIA
Resumo:
The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μT BS) between a feldspathic ceramic and two composites. Forty blocks (6.0 × 6.0 × 5.0 mm 3) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm2 ± 0.2 mm) were stored in distilled water at 37°C for 30 days and submitted to thermocycling (7,000 cycles; 5°C/55°C ± 1°C). The μT BS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (α = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.
Resumo:
This study aimed to evaluate Y-TZP surface after different airborne particle abrasion protocols. Seventy-six Y-TZP ceramic blocks (5×4×4) mm3 were sintered and polished. Specimens were randomly divided into 19 groups (n=4) according to control group and 3 factors: a) protocol duration (2 and 4 s); b) particle size (30 μm, alumina coated silica particle; 45 μm, alumina particle; and 145 μm, alumina particle) and; c) pressure (1.5, 2.5 and 4.5 bar). Airborne particle abrasion was performed following a strict protocol. For qualitative and quantitative results, topography surfaces were analyzed in a digital optical profilometer (Interference Microscopic), using different roughness parameters (Ra, Rq, Rz, X-crossing, Mr1, Mr2 and Sdr) and 3D images. Surface roughness also was analyzed following the primer and silane applications on Y-TZP surfaces. One-way ANOVA revealed that treatments (application period, particle size and pressure of particle blasting) provided significant difference for all roughness parameters. The Tukey test determined that the significant differences between groups were different among roughness parameters. In qualitative analysis, the bonding agent application reduced roughness, filing the valleys in the surface. The protocols performed in this study verified that application period, particle size and pressure influenced the topographic pattern and amplitude of roughness.
Resumo:
Aim: The first aim of the present experiment was to compare bone healing at implants installed in recipient sites prepared with conventional drills or a piezoelectric device. The second aim was to compare implant osseointegration onto surfaces with and without dendrimers coatings. Material and Methods: Six Beagles dogs were used in this study. Five implants with two different surfaces, three with a ZirTi® surface (zirconia sand blasted, acid etched), and two with a ZirTi®-modified surface with dendrimers of phosphoserine and polylysine were installed in the right side of the mandible. In the most anterior region (P2, P3), two recipient sites were prepared with drills, and one implant ZirTi® surface and one coated with dendrimers implants were installed at random. In the posterior region (P4 and M1), three recipient sites were randomly prepared: two sites with a Piezosurgery® instrument and one site with drill and two ZirTi® surface and one coated with dendrimers implants installed. Three months after the surgery, the animals were sacrificed for histological analysis. Results: No complications occurred during the healing period. Three implants were found not integrated and were excluded from analysis. However, n = 6 was obtained. The distance IS-B at the buccal aspect was 2.2 ± 0.8 and 1.8 ± 0.5 mm, while IS-C was 1.5 ± 0.9 and 1.4 ± 0.6 mm at the Piezosurgery® and drill groups, respectively. Similar values were obtained between the dendrimers-coated and ZirTi® surface implants. The BIC% values were higher at the drill (72%) compared to the Piezosurgery® (67%) sites. The BIC% were also found to be higher at the ZirTi® (74%) compared to the dendrimers-coated (65%) implants, the difference being statistically significant. Conclusion: This study has revealed that oral implants may osseointegrate equally well irrespective of whether their bed was prepared utilizing conventional drills with abundant cooling or Piezosurgery®. Moreover, the surface coating of implants with dendrimers phosphoserine and polylysine did not improve osseointegration. © 2012 John Wiley & Sons A/S.
Resumo:
Objectives: This study investigated the effect of extreme cooling methods on the flexural strength, reliability and shear bond strength of veneer porcelain for zirconia. Methods: Vita VM9 porcelain was sintered on zirconia bar specimens and cooled by one of the following methods: inside a switched-off furnace (slow), at room temperature (normal) or immediately by compressed air (fast). Three-point flexural strength tests (FS) were performed on specimens with porcelain under tension (PT, n = 30) and zirconia under tension (ZT, n = 30). Shear bond strength tests (SBS, n = 15) were performed on cylindrical blocks of porcelain, which were applied on zirconia plates. Data were submitted to one-way ANOVA and Tukey's post hoc tests (p < 0.05). Weibull analysis was performed on the PT and ZT configurations. Results: One-way ANOVA for the PT configuration was significant, and Tukey's test revealed that fast cooling leads to significantly higher values (p < 0.01) than the other cooling methods. One-way ANOVA for the ZT configuration was not significant (p = 0.06). Weibull analysis showed that normal cooling had slightly higher reliability for both the PT and ZT configurations. Statistical tests showed that slow cooling decreased the SBS value (p < 0.01) and showed less adhesive fracture modes than the other cooling methods. Clinical Significance: Slow cooling seems to affect the veneer resistance and adhesion to the zirconia core; however, the reliability of fast cooling was slightly lower than that of the other methods. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0-14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
Pós-graduação em Ciências Odontológicas - FOAR
Resumo:
Pós-graduação em Química - IQ
Crescimento de fibras de zircônia preparadas pela rota sol-gel a partir de moldes de cristal líquido
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)