204 resultados para Rectangular waveguides
Resumo:
We report the use of organic-inorganic sol-gel derived poly(oxyehylene)/ siloxane hybrid doped with methacrylic acid modified zirconium (IV) n-propoxide for the fabrication of low cost waveguides trough direct UV laser writing. The organic-inorganic hybrids were processed as monoliths with size and shape control. The effective guiding region was identified and the number of modes was estimated via mode field analyses. A grating was successfully superimposed on the channel and the respective reflection spectrum was measured, enabling the determination of the guiding region dimension, the calculation of the effective refractive index of the guided mode. © 2007 IEEE.
Resumo:
Introduction: The knowledge of dental occlusion should be considered the basic foundation to an excellent orthodontic practice. The patient's diagnose without the centric relation assessment can take the orthodontist to an unpleasant surprises. The use of rectangular archwires requires occlusal contacts been checked to decide what kind of the dental movement will be necessary to achieve the dental equilibrium and mainly to investigate if the movement will be possible. Considering the occlusal surfaces complexity, the occlusal adjustment by selective grinding should be performed during the orthodontic treatment to allow vertical dental movements reducing treatment's time. Occlusal interferences are responsible not only for biomechanics adverse effects, producing undesirable dental movements, but also for potential side effects such as excessive forces (occlusal trauma), leading to roots reabsorption. The occlusal adjustment is a determinant point on dental balance after the end of orthodontics treatments, where each posterior occlusal tooth contacts A and B, or B and C on buccolingual aspect, as well as the stoppers and equalizers contacts on mesiodistal direction must be achieved and well established. The appropriate role of anterior teeth in mandibular movements must be determined, allowing immediate disclusion of posterior teeth, known as anterior guide, and promoting protecting muscle forces to the stomatognathic system. Selective grinding should not be used. in place of well planned and executed orthodontic movement. Aim: The aim of this article is to present the rationale use of occlusal adjustment in Orthodontics.
Resumo:
The activities and management operations of wood harvesting do not have good computational tools available to help the forest technicians with the task of cost reduction. In many cases, machines of high investment are used in wood harvesting without adequate operation planning; consequently, the cost per hour of these machines, which is high, could be reduced. Using technological resources such as the Geographic Information Systems (GIS) integrated with the Global Positioning System (GPS), which are the basis of precision harvesting. In this research, a technological tool capable of calculating and optimizing the average skidding distance of the forwarder was developed. It was used in stands of different sizes and formats through mathematical techniques and available functionalities in the Geographic Information System GRASS. The developed tool, called optimized model, divides the stand in small parts in relation to shorter skidding distances. The main variable considered was the alignment of plantation. The model was tested in eucalypt stands located in the State of São Paulo. Sixteen stands were randomly selected: eight with a rectangular polygon form, and eight with irregular polygon form. The main variables were collected in these stands. Results showed that the optimized model developed, is efficient and flexible. It was possible to divide the stands in small parts resulting in smaller skidding medium distances. The stands with irregular form had shorter skidding medium distances than the rectangular stands.
Resumo:
This study evaluated the effect of denture base polymer type (heat- and microwave-polymerized), ridge lap surface treatment (with and without methyl methacrylate-MMA etching) and thermocycling on the microtensile bond strength (mTBS) of Biotone acrylic teeth. Flat-ground, ridge-lap surface of posterior artifcial teeth were bonded to cylinders of each denture base resin, resulting in the following groups (n=6): G1a - Clássico/with MMA etching; G1b - Clássico/without MMA etching; G2a - OndaCryl/with MMA etching; G2b - OndaCryl/without MMA etching. Rectangular bar specimens with a cross-sectional area of 1 mm 2 were prepared. Half of the bars in each group were thermocycled (5,000 cycles between 4°C and 60°C). mTBS testing was performed in an universal testing machine at a crosshead speed of 0.5 mm/min. Data were analyzed statistically by three-way ANOVA (a=0.05). There was no statisti-caly signifcant difference (p>0.05) for the factors (resin, surface treatment,and thermocycling) or their interactions. The mean mTBS values (MPa) and standard deviations were as follows: Thermocycling - G1a: 41.00 (14.00); G1b: 31.00 (17.00); G2a: 50.00 (27.00); G2b: 40.00 (18.00); No thermocycling - G1a: 37.00 (14.00); G1b: 43.00 (25.00); G2a: 43.00 (14.00); G2b: 40.00 (27.00). The mTBS of Biotone artifcial teeth to the denture base acrylic resins was not infuenced by the polymer type, surface treatment or thermocycling.
Resumo:
Significant efforts are devoted to developing new ferroelectrets with well-controlled void distributions or uniform voids and with good long-term and thermal stability of the piezoelectricity. Here, we describe the concept, the fabrication, and the most relevant properties of fluoropolymer ferroelectret systems with three separate films of fluoroethylenepropylene (FEP), alternating with two polytetrafluoroethylene (PTFE) templates. The FEP films are selectively fused by means of a lamination process. Two practically identical PTFE templates are used, which have parallel rectangular openings (1.5×30 mm 2) separated by PTFE ridges of 1.5 mm width. After removing the PTFE templates, a three-layer FEP-film sandwich with tubular channels is obtained. We demonstrate that such FEP-film systems exhibit significant and stable piezoelectricity after charging under a high DC voltage. The resulting piezoelectric effect may be further improved by carefully assembling and arranging the PTFE templates during preparation. ©2010 IEEE.
Resumo:
The class of piezoelectric actuators considered in this paper consists of a multi-flexible structure actuated by two or more piezoceramic devices that must generate different output displacements and forces at different specified points of the domain and in different directions. The devices were modeled by finite element using the software ANSYS and the topology optimization method. The following XY actuators were build to achieve maximum displacement in the X and Y directions with a minimum crosstalk between them. The actuator prototypes are composed of an aluminum structure, manufactured by using a wire Electrical Discharge Machining, which are bonded to rectangular PZT5A piezoceramic blocks by using epoxy resin. Multi-actuator piezoelectric device displacements can be measured by using optical interferometry, since it allows dynamic measurements in the kHz range, which is of the order of the first resonance frequency of these piezomechanisms. A Michelson-type interferometer, with a He-Ne laser source, is used to measure the displacement amplitudes in nanometric range. A new optical phase demodulation technique is applied, based on the properties of the triangular waveform drive voltage applied to the XY piezoelectric nanopositioner. This is a low-phase-modulation-depth-like technique that allows the rapid interferometer auto-calibration. The measurements were performed at 100 Hz frequency, and revealed that the device is linear voltage range utilized in this work. The ratio between the generated and coupled output displacements and the drive voltages is equal to 10.97 nm/V and 1.76 nm/V, respectively, which corresponds to a 16% coupling rate. © 2010 IEEE.
Resumo:
We address the bandgap effect and the thermo-optical response of high-index liquid crystal (LC) infiltrated in photonic crystal fibers (PCF) and in hybrid photonic crystal fibers (HPCF). The PCF and HPCF consist of solid-core microstructured optical fibers with hexagonal lattice of air-holes or holes filled with LC. The HPCF is built from the PCF design by changing its cladding microstructure only in a horizontal central line by including large holes filled with high-index material. The HPCF supports propagating optical modes by two physical effects: the modified total internal reflection (mTIR) and the photonic bandgap (PBG). Nevertheless conventional PCF propagates light by the mTIR effect if holes are filled with low refractive index material or by the bandgap effect if the microstructure of holes is filled with high refractive-index material. The presence of a line of holes with high-index LC determines that low-loss optical propagation only occurs on the bandgap condition. The considered nematic liquid crystal E7 is an anisotropic uniaxial media with large thermo-optic coefficient; consequently temperature changes cause remarkable shifts in the transmission spectrums allowing thermal tunability of the bandgaps. Photonic bandgap guidance and thermally induced changes in the transmission spectrum were numerically investigated by using a computational program based on the beam propagation method. © 2010 SPIE.
Resumo:
Objective: To evaluate the intraexaminer reproducibility of static anthropometric measurements of undergraduate dental students as well as the characteristics and regulating measurements of the dental stools used by them. Methods: Forty volunteers and 6 types of dental stools were evaluated. For the anthropometric measurements the employed equipments were: an adapted office chair, aflexible measuring tape with two adapted rods, a metallic device with a 90 degree central angle, string, a 35 x 24 cm rectangular wooden board, isolating tape and crepe tape. In order to standardize the position of the adapted office chair and the volunteers' feet, the floor was marked with the isolating and crepe tapes. A string was attached to the waist of each volunteer to mark the area corresponding to the kidney region making it possible to measure the seat-renal region area. The examined anthropometric measurements were height, trunkcephalic heigh, sacral-popliteal distance (OK?), hip width, popliteal height and the seat-renal region height. The evaluated characteristics of the dental stools relative to the seat were depth, horizontal width and minimum/maximum height. The back of the dental stool was evaluated as for the minimum/ maximum height adjustment. The anthropometric and dental stool measurements were obtained by a single examiner at two moments with a 1-week interval between the evaluations. Intra-class correlation coefficient (ρ) was used to estimate the intraexaminer reproducibility. Results: Excellent reproducibility was observed for all anthropometric measurements obtained (ρ=0.99) as well as for all dental stools evaluated (ρ=0.99). Conclusion: The method used to obtain the anthropometric and dental stools measurements was reproducible and can be used reliably.
Resumo:
This paper introduces a methodology for predicting the surface roughness of advanced ceramics using Adaptive Neuro-Fuzzy Inference System (ANFIS). To this end, a grinding machine was used, equipped with an acoustic emission sensor and a power transducer connected to the electric motor rotating the diamond grinding wheel. The alumina workpieces used in this work were pressed and sintered into rectangular bars. Acoustic emission and cutting power signals were collected during the tests and digitally processed to calculate the mean, standard deviation, and two other statistical data. These statistics, as well the root mean square of the acoustic emission and cutting power signals were used as input data for ANFIS. The output values of surface roughness (measured during the tests) were implemented for training and validation of the model. The results indicated that an ANFIS network is an excellent tool when applied to predict the surface roughness of ceramic workpieces in the grinding process.
Resumo:
The liver of P. expansa was characterized morphohistologically. To this end, twenty livers from clinically healthy male and female Podocnemis expansa, weighing from 2.0 to 4,5 kg, supplied by the commercial breeder Fazenda Moenda da Serra, in Araguapaz, state of Goiás, Brazil, were analyzed macro-and microscopically. The coelomatic cavity was opened and the topography of the fresh organs was examined visually. After the histological preparation, the slides were stained with Hematoxylin and Eosin (HE), Periodic Acid-Schiff (PAS), Gomori Trichrome, Reticulin and Picrosirius. The liver of P. expansa is a voluminous organ with an approximately rectangular shape and brown coloration, varying from light to dark shades, and is divided into a right lobe, left lobe, and a central portion. The right lobe is the largest of the three portions. The gall bladder is located in a depression in the caudal portion of the right lobe, where the gall duct begins and empties into the duodenum. Histologically, the hepatocytes are arranged in the form of double cords surrounded by winding sinusoidal capillaries. In cross section, they resemble acini containing approximately two to five hepatocytes surrounding a probable central biliary canaliculus. The hepatocytes are polyhedral or pyramidal in shape, of uniform size, with a few central nuclei and others displaced peripherally, and the cytoplasm is little eosinophilic when analyzed by the HE staining technique. The parenchyma is supported by delicate reticular fibers surrounding hepatocytes and sinusoids. The parenchyma and perisinusoidal spaces contain large quantities of melanomacrophages, mainly close to the portal spaces.
Resumo:
The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Eletroestimulador funcional de oito canais com malha de realimentação utilizando Controlador Digital
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)