127 resultados para Precision and recall


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A measurement technique of charm baryons lifetimes from hadro-production data was presented. The measurement verified the lifetime analysis procedure in a sample with higher statistical precision. Other effects studied include mass reflections; effects of the presence of a second charm particle; and mismeasurement of charm decays. Monte carlo simulations were used for the detailed study of systematic effects using the charm data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a practical experimentation for comparing reactive/non-active energy measures, considering three-phase four-wire non-sinusoidal and unbalanced circuits, involving five different commercial electronic meters. The experimentation set provides separately voltage and current generation, each one with any waveform involving up to fifty-first harmonic components, identically compared with acquisitions obtained from utility. The experimental accuracy is guaranteed by a class A power analyzer, according to IEC61000-4-30 standard. Some current and voltage combination profiles are presented and confronted with two different references of reactive/non-active calculation methodologies; instantaneous power theory and IEEE 1459-2010. The first methodology considers the instantaneous power theory, present into the advanced mathematical internal algorithm from WT3000 power analyzer, and the second methodology, accomplish with IEEE 1459-2010 standard, uses waveform voltage and current acquisition from WT3000 as input data for a virtual meter developed on Mathlab/Simulink software. © 2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the widespread proliferation of computers, many human activities entail the use of automatic image analysis. The basic features used for image analysis include color, texture, and shape. In this paper, we propose a new shape description method, called Hough Transform Statistics (HTS), which uses statistics from the Hough space to characterize the shape of objects or regions in digital images. A modified version of this method, called Hough Transform Statistics neighborhood (HTSn), is also presented. Experiments carried out on three popular public image databases showed that the HTS and HTSn descriptors are robust, since they presented precision-recall results much better than several other well-known shape description methods. When compared to Beam Angle Statistics (BAS) method, a shape description method that inspired their development, both the HTS and the HTSn methods presented inferior results regarding the precision-recall criterion, but superior results in the processing time and multiscale separability criteria. The linear complexity of the HTS and the HTSn algorithms, in contrast to BAS, make them more appropriate for shape analysis in high-resolution image retrieval tasks when very large databases are used, which are very common nowadays. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Several machining processes have been created and improved in order to achieve the best results ever accomplished in hard and difficult to machine materials. Some of these abrasive manufacturing processes emerging on the science frontier can be defined as ultra-precision grinding. For finishing flat surfaces, researchers have been putting together the main advantages of traditional abrasive processes such as face grinding with constant pressure, fixed abrasives for two-body removal mechanism, total contact of the part with the tool, and lapping kinematics as well as some specific operations to keep grinding wheel sharpness and form. In the present work, both U d-lap grinding process and its machine tool were studied aiming nanometric finishing on flat metallic surfaces. Such hypothesis was investigated on AISI 420 stainless steel workpieces U d-lap ground with different values of overlap factor on dressing (Ud=1, 3, and 5) and grit sizes of conventional grinding wheels (silicon carbide (SiC)=#800, #600, and #300) applying a new machine tool especially designed and built for such finishing. The best results, obtained after 10 min of machining, were average surface roughness (Ra) of 1.92 nm, 1.19-μm flatness deviation of 25.4-mm-diameter workpieces, and mirrored surface finishing. Given the surface quality achieved, the U d-lap grinding process can be included among the ultra-precision abrasive processes and, depending on the application, the chaining steps of grinding, lapping, and polishing can be replaced by the proposed abrasive process.