280 resultados para Pbo-zno-sio2
Resumo:
Fabrication and optical characterization of Tm3+/Yb3+ codoped PbO-GeO2 (PGO) pedestal-type waveguides are investigated in this work. It is important to mention that, to the best of authors' knowledge, the use of PGO pedestal-type waveguide has not been studied before. PGO thin films codoped with Tm3+ and Yb3+ were obtained through RF magnetron sputtering technique. The pedestal profile was obtained using conventional optical lithography procedures, followed by plasma etching and sputtering deposition. The profile of Tm3+/Yb3+ codoped PGO waveguides was observed by means of Scanning Electron Microscopy (SEM) measurements. Also the infrared and infrared-to-visible frequency upconversion luminescences of Tm3+ ions were measured exciting the samples with a cw 980 nm diode laser. Propagation losses around 11 dB/cm and 9 dB/cm were obtained at 630 and 1050 nm, respectively, for waveguides in the 20-100 μm width range. Single-mode propagation was observed for waveguides width up to 12 μm and 7 μm, at 1050 nm and 630 nm, respectively; larger waveguides width provided multi-mode propagation. The present results corroborate the possibility of using Tm3+/Yb3+ codoped PGO thin films as active waveguide for photonic applications. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Hydrogenated bulk Zn1-xCoxO samples were synthesized via standard solid-state reaction route with Co molar concentrations up to 15 at.%. Magnetic characterization demonstrates a room temperature ferromagnetic behavior associated to a paramagnetic Curie-Weiss component. Detailed microstructural analysis was carried out to exclude the presence of extrinsic sources of ferromagnetism. The magnetization increases linearly as a function of Co concentration. Hall measurements reveal an insulating character for the whole set of samples. In this context, the defect mediated magnetic coupling between the Co atoms under the scope of the bound magnetic polarons model is used to interpret the observed room temperature ferromagnetism. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Application of nanoscale materials in photovoltaic and photocatalysis devices and photosensors are dramatically affected by surface morphology of nanoparticles, which plays a fundamental role in the understanding of the physical and chemical properties of nanoscale materials. Zinc oxide nanoparticles with an average size of 20 nm were obtained by the use of a sonochemical technique. X-ray diffraction (XRD) associated to Rietveld refinements and transmission electron microscopy (TEM) were used to study structural and morphological characteristics of the samples. An amorphous shell approximately 10 nm thick was observed in the ultrasonically treated sample, and a large reduction in particle size and changes in the lattice parameters were also observed. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The degradation phenomena of ZnO and SnO2-based varistors were investigated for two different degradation methods: DC voltage at increased temperature and degradation with 8/20 μs pulsed currents (lightning type). Electrostatic force microscopy (EFM) was used to analyze the surface charge accumulated at grain-boundary regions before and after degradation. Before the degradation process, 85% of the barriers are active in the SnO2 system, while the ZnO system presents only 30% effective barriers. Both systems showed changes in the electrical behavior when degraded with pulses. In the case of the ZnO system, the behavior after pulse degradation was essentially ohmic due to the destruction of barriers (about 99% of the interfaces are conductive). After the degradation with 8/20 μs pulsed currents, the SnO2 system still presents nonohmic behavior with a significant decrease in the quantity of effective barriers (from 85% to 5%). However, when the degradation is accomplished with continuous current, the SnO2 system exhibits minimum variation, while the ZnO system degrades from 30% to 5%. This result indicates the existence of metastable defects of low concentration and/or low diffusion in the SnO2 system. High energy is necessary to degrade the barriers due to defect annihilation in the SnO2 system. © 2013 The American Ceramic Society.
Resumo:
The understanding and control of ferromagnetism in diluted magnetic semiconducting oxides (DMO) is a special challenge in solid-state physics and materials science due to its impact in magneto-optical devices and spintronics. Several studies and mechanisms have been proposed to explain intrinsic ferromagnetism in DMO compounds since the theoretical prediction of room-temperature ferromagnetism. However, genuine and intrinsic ferromagnetism in 3d-transition metal-doped n-type ZnO semiconductors is still a controversial issue. Furthermore, for DMO nanoparticles, some special physical and chemical effects may also play a role. In this contribution, structural and magnetic properties of sonochemically prepared cobalt-doped ZnO nanoparticles were investigated. A set of ZnO samples was prepared varying cobalt molar concentration and time of ultrasonic exposure. The obtained results showed that single phase samples can be obtained by the sonochemical method. However, cobalt nanoclusters can be detected depending on synthesis conditions. Magnetic measurements indicated a possible ferromagnetic response, associated to defects and cobalt substitutions at the zinc site by cobalt. However, ferromagnetism is depleted at higher magnetic fields. Also, an antiferromagnetic response is detected due to cobalt oxide cluster at high cobalt molar concentrations. © 2012 Springer Science+Business Media, LLC.
Resumo:
Zinc oxide (ZnO) thin films were prepared using reactive radio-frequency magnetron sputtering of a pure metallic zinc target onto glass substrates. The evolution of the surface morphology and the optical properties of the films were studied as a function of the substrate temperature, which was varied from 50 to 250 C. The surface topography of the samples was examined using atomic force microscopy (AFM), and their optical properties were studied via transmittance measurements in the UV-Vis-NIR region. DRX and AFM analyses showed that the surface morphology undergoes a structural transition at substrate temperatures of around 150 C. Actually, at 50 C the formation of small grains was observed while at 250 C the grains observed were larger and had more irregular shapes. The optical gap remained constant at ∼3.3 eV for all films. In the visible region, the average optical transmittance was 80 %. From these results, one can conclude that the morphological properties of the ZnO thin films were more greatly affected by the substrate temperature, due to mis-orientation of polycrystalline grains, than were the optical properties. © 2013 Springer Science+Business Media New York.
Resumo:
In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures. © 2013 The Royal Society of Chemistry.
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)