129 resultados para PARAMETRIC RESONANCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The impact of a (I=0, JP=1/2+)Z+(1540) resonance with a width of 5 MeV or more on the K+N(I=0) elastic cross section and on the P01 phase shift is examined within the KN meson-exchange model of the Jülich group. It is shown that the rather strong enhancement of the cross section caused by the presence of a Z + with the above properties is not compatible with the existing empirical information on KN scattering. Only a much narrower Z+ state could be reconciled with the existing data - or, alternatively, the Z + state must lie at an energy much closer to the KN threshold.
Resumo:
We analyze the premises of recent propositions to test local realism via the Bell inequalities using neutral kaons from φ resonance decays as entangled Einstein-Podolsky-Rosen pairs. We pay special attention to the derivation of the Bell inequalities, or related expressions, for unstable and oscillating kaon quasispin states and to the possibility of the actual identification of these states through their associated decay modes. We discuss an indirect method to extract probabilities to find these states by combining experimental information with theoretical input. However, we still find inconsistencies in previous derivations of the Bell inequalities. We show that the identification of the quasispin states via their associated decay mode does not allow the free choice to perform different tests on them, a property which is crucial to establish the validity of any Bell inequality in the context of local realism. In view of this we propose a different kind of Bell inequality in which the free choice or adjustability of the experimental setup is guaranteed. We also show that the proposed inequalities are violated by quantum mechanics. ©1999 The American Physical Society.
Resumo:
Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.
Resumo:
To evaluate variations of some anatomic structures of sellar and parasellar regions and their possible differences between genders and age groups. Magnetic resonance images (MRI) of 380 patients were performed to analyze the dimensions of the sphenoid sinus, pituitary gland, optic chiasm, intra-cavernous carotid distances, distance between columella nasal - sphenoid sinus; and columella nasal-pituitary gland. The patients age ranged between 20 and 80 years (mean age 48 years). The study included 235 females (mean age 53 years) and 145 males (mean age 40 years). The transverse length of the pituitary, the inter-carotid distance and the height of the pituitary were similar between genders and age groups. The width and height of the optic chiasm showed differences only between females of different ages. Males presented greater distances between nasal columella and sphenoid sinus. The most common type of pneumatization of the sphenoid sinus was the sellar, and depending on the age group, sphenoid sinus was larger in males than females. The anatomy of the Sellar and parasellar regions is complex and varies widely within the normal range. They are a small area, rich in anatomical details affecting multiple physiological systems in the body and, therefore, have great importance in several medical fields. A better understanding of these complex structures is essential in clinical diagnosis and treatment of disease.
Resumo:
Studies using quantitative neuroimaging have shown subtle abnormalities in patients with idiopathic generalized epilepsy (IGE). These findings have several locations, but the midline parasagittal structures are most commonly implicated. The cingulate cortex is related and may be involved. The objective of the current investigation was to perform a comprehensive analysis of the cingulate cortex using multiple quantitative structural neuroimaging techniques. Thirty-two patients (18 women, 30 ± 10 years) and 36 controls (18 women, 32 ± 11 years) were imaged by 3 Tesla magnetic resonance imaging (MRI). A volumetric three-dimensional (3D) sequence was acquired and used for this investigation. Regions-of-interest were selected and voxel-based morphometry (VBM) analyses compared the cingulate cortex of the two groups using Statistical Parametric Mapping (SPM8) and VBM8 software. Cortical analyses of the cingulate gyrus was performed using Freesurfer. Images were submitted to automatic processing using built-in routines and recommendations. Structural parameters were extracted for individual analyses, and comparisons between groups were restricted to the cingulate gyrus. Finally, shape analyses was performed on the anterior rostral, anterior caudal, posterior, and isthmus cingulate using spherical harmonic description (SPHARM). VBM analyses of cingulate gyrus showed areas of gray matter atrophy, mainly in the anterior cingulate gyrus (972 mm(3) ) and the isthmus (168 mm(3) ). Individual analyses of the cingulate cortex were similar between patients with IGE and controls. Surface-based comparisons revealed abnormalities located mainly in the posterior cingulate cortex (718.12 mm(2) ). Shape analyses demonstrated a predominance of anterior and posterior cingulate abnormalities. This study suggests that patients with IGE have structural abnormalities in the cingulate gyrus mainly localized at the anterior and posterior portions. This finding is subtle and variable among patients.
Resumo:
Short implants are increasingly used, but there is doubt about their performance being similar to that of regular implants. The aim of this study was to compare the mechanical stability of short implants vs. regular implants placed in the edentulous posterior mandible. Twenty-three patients received a total of 48 short implants (5 × 5.5 mm and 5 × 7 mm) and 42 regular implants (4 × 10 mm and 4 × 11.5 mm) in the posterior mandible. Patients who received short implants had <10 mm of bone height measured from the bone crest to the outer wall of the mandibular canal. Resonance frequency analysis (RFA) was performed at time intervals T0 (immediately after implant placement), T1 (after 15 days), T2 (after 30 days), T3 (after 60 days), and T4 (after 90 days). The survival rate after 90 days was 87.5% for the short implants and 100% for regular implants (P < 0.05). There was no significant difference between the implants in time intervals T1, T2, T3, and T4. In T0, the RFA values of 5 × 5.5 implants were higher than values of 5 × 7 and 4 × 11.5 implants (P < 0.05). A total of six short implants that were placed in four patients were lost (three of 5 × 5.5 mm and three of 5 × 7 mm). Three lost implants started with high ISQ values, which progressively decreased. The other three lost implants started with a slightly lower ISQ value, which rose and then began to fall. Survival rate of short implants after 90 days was lower than that of regular implants. However, short implants may be considered a reasonable alternative for rehabilitation of severely resorbed mandibles with reduced height, to avoid performing bone reconstruction before implant placement. Patients need to be aware of the reduced survival rate compared with regular implants before implant placement to avoid disappointments.
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.