189 resultados para Multilayer artificial neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Construir uma rede neural artificial para auxiliar os gestores de restaurantes universitários na previsão de refeições diárias. MÉTODOS: O estudo foi desenvolvido a partir do levantamento de oito variáveis que influenciam o número de refeições diárias servidas no restaurante universitário. Utiliza-se o algoritmo de treinamento Backpropagation. Os resultados por meio da rede são comparados com os da série estudada e com resultados da estimação por média aritmética simples. RESULTADOS: A rede proposta acompanha as inúmeras alterações que ocorrem no número de refeições diárias do restaurante universitário. em 73% dos dias analisados, o método das redes neurais artificiais apresenta uma taxa de acerto maior do que o método da média aritmética simples. CONCLUSÃO: A rede neural artificial mostrou-se mais adequada para a previsão do número de refeições do que a metodologia de média simples ou quando a decisão do número de refeições é feita de forma subjetiva, sem critérios científicos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new approach for rainfall measurements making use of weather radar data for real time application to the radar systems operated by institute of Meteorological Research (IPMET) - UNESP - Bauru - SP-Brazil. Several real time adjustment techniques has been presented being most of them based on surface rain-gauge network. However, some of these methods do not regard the effect of the integration area, time integration and distance rainfall-radar. In this paper, artificial neural networks have been applied for generate a radar reflectivity-rain relationships which regard all effects described above. To evaluate prediction procedure, cross validation was performed using data from IPMET weather Doppler radar and rain-gauge network under the radar umbrella. The preliminary results were acceptable for rainfalls prediction. The small errors observed result from the spatial density and the time resolution of the rain-gauges networks used to calibrate the radar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results from an efficient approach to an automatic detection and extraction of human faces from images with any color, texture or objects in background, that consist in find isosceles triangles formed by the eyes and mouth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the relationships between the amount of energy consumed for transportation purposes and a few selected variables related to urban form and socioeconomic characteristics of some of the largest Brazilian cities is conducted in this work. The studied cities include all 27 state capitals regardless of their size and population and 184 urban areas each with more than 20,000 inhabitants located in the state of São Paulo. Two different techniques were applied for data analyses: a more traditional regression analysis approach and artificial neural networks. In general, the results found in the analyses conducted here support the assumption that urban sprawl increases the energy use for transportation. In the case of the 27 state capitals, the analysis indicated that two spatial variables have a strong impact on the energy consumed for urban transportation: urban density and the ratio between the longest distances in the east-west and north-south directions. In the case of the 184 urbanized areas we also reached a similar conclusion. In that case, however, income and employment level apparently have a stronger influence on the amount of energy consumed. The results of the present study stress the importance of physical planning in developing country cities in order to reduce energy use for transportation. © 2007 International Energy Initiative, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The energy efficiency of buildings should be a goal at the pre-design phase, though the importance of the design variables is often neglected even during the design process. Highlighting the relevance of these design variables, this research studies the relationships of building location variables with the electrical energy consumption of residential units. The following building design parameters are considered: orientation, story height and sky view factor (SVF). The consideration of the SVF as a location variable contributes to the originality of this research. Data of electrical energy consumption and users' profiles were collected and several variables were considered for the development of an Artificial Neural Network model. This model allows the determination of the relative importance of each variable. The results show that the apartments' orientation is the most important design variable for the energy consumption, although the story height and the sky view factor play a fundamental role in that consumption too. We pointed out that building heights above twenty-four meters do not optimize the energy efficiency of the apartments and also that an increasing SVF can influence the energy consumption of an apartment according to their orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial intelligence techniques have been extensively used for the identification of several disorders related with the voice signal analysis, such as Parkinson's disease (PD). However, some of these techniques flaw by assuming some separability in the original feature space or even so in the one induced by a kernel mapping. In this paper we propose the PD automatic recognition by means of Optimum-Path Forest (OPF), which is a new recently developed pattern recognition technique that does not assume any shape/separability of the classes/feature space. The experiments showed that OPF outperformed Support Vector Machines, Artificial Neural Networks and other commonly used supervised classification techniques for PD identification. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the first study and development of an electronic tongue analysis system for the monitoring of nitrogen stable species: nitrate, nitrite and ammonium in water. The electronic tongue was composed of an array of 15 potentiometric poly(vinyl chloride) membrane sensors sensitive to cations and anions plus an artificial neural network (ANN) response model. The building of the ANN model was performed in a medium containing sodium, potassium, and chloride as interfering ions, thus simulating real environmental samples. The correlation coefficient in the cross-validation of nitrate, nitrite and ammonium was satisfactory in the three cases with values higher than 0.92. Finally, the utility of the proposed system is shown in the monitoring of the photoelectrocatalytic treatment of nitrate. © 2013 Elsevier B.V.