239 resultados para Modelagem via elementos finitos


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is to analyze the behavior of context concentrated stresses generated around a nozzle connected to a pressure vessel. For this analysis we used the finite element method via a computer interface, the software ANSYS WORKBENCH. It was first necessary to study and intensive training of the software used, and also a study of the ASME Code, Section VIII, which is responsible for the standards used in pressure vessels. We analyzed three cases, which differ primarily in the variation of the diameter of the nozzle in order to analyze the variation of the stresses according to the variation of the diameters. The nozzle diameters were 35, 75 and 105 mm. After the model designed vessel, a pressure was applied on the innervessel of 0.5 MPa. For the smallest diameter, was found the lowest tensions concentrated. Varying between 1 and 223 MPa. Increasing the diameter of the nozzle resulted in increased tensions concentrated around the junction nozzle /vessel. The maximum stresses increased by 78% when the value was increased in diameter from 35 to 75 mm. Since the increase in diameter from 75 to 105 mm, the values of the tensions increased around 43%. These figures emphasize that stress concentrations increased with increasing the diameter of the nozzles, but not linearly

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the biomechanical behavior of different implant connection types, by means of three-dimensional finite element analysis. 3 Three-dimensional models were created with a graphic modeling software: SolidWorks 2006 and Rhinoceros 4.0, and InVesalius (CTI, São Paulo, Brasil), the bone was obtained by computerized tomography of a sagittal section of the molar region. The model was composed by bone block with an implant (4 x 10 mm) (Conexão Sistemas de Prótese, São Paulo), with different implant connections: external hex, internal hex and Morse-taper with the corresponding prosthetic component Ucla or Morse-taper abutment. The Three-dimensional models were transferred to finite element software Femap 10.0 (Siemens PLM Software Inc., CA, USA), to generate a mesh, boundary conditions and loading. An axial (200N) and oblique load (100N) was applied on the occlusal surface of the crowns. Analyses were performed using the finite element software NEiNastran 9.0 (Noran Engineering, Inc., USA) and transferred to the Femap 10.0 to obtain the results; after the results were visualized using von Mises stress maps and Maximum stress principal. The results showed the stress distribution was similar between models, with a little superiority of Morse-taper connection. It was concluded that: the three connection types were biomechanical viable; The Morse-taper connection presented the better internal stress distribution; there was not significant biomechanical differences on the bone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water management in any area is highly important to the success of many business and also of life and the understanding of your relationship with the environment brings better control to its demand. I.e. hydrogeological studies are needed under better understanding of the behavior of an aquifer, so that its management is done so as not to deplete or harm it. The objective of this work is the numerical modeling in transient regime of a portion of the Rio Claro aquifer formation in order to get answers about its hydrogeological parameters, its main flow direction and also its most sensitive parameters. A literature review and conceptual characterization of the aquifer, combined with field campaigns and monitoring of local water level (NA), enabled the subsequent construction of the mathematical model by finite elements method, using the FEFLOW 6.1 ® computational algorithm. The study site includes the campus of UNESP and residential and industrial areas of Rio Claro city. Its area of 9.73 km ² was divided into 318040 triangular elements spread over six layers, totaling a volume of 0.25 km³. The local topography and geological contacts were obtained from previous geological and geophysical studies as well as profiles of campus wells and SIAGAS / CPRM system. The seven monitoring wells on campus were set up as observation points for calibration and checking of the simulation results. Sampling and characterization of Rio Claro sandstones shows up a high hydrological and lithological heterogeneity for the aquifer formation. The simulation results indicate values of hydraulic conductivity between 10-6 and 10-4 m / s, getting the Recharge/Rainfall simulation in transient ratio at 13%. Even with the simplifications imposed on the model, it was able to represent the fluctuations of local NA over a year of monitoring. The result was the exit of 3774770 m³ of water and the consequently NA fall. The model is considered representative for the...

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)