220 resultados para Mercury toxicity
Resumo:
Thermogravimetry (TG) and other analysis techniques (EDX, SEM, Mapping surface, X-ray diffraction, inductively coupled argon plasma emission spectroscopy and atomic spectrometry with cold vapor generation) were used to study the reaction of Hg with Rh. The results permitted the suggestion that, when subjected to heat, an electrodeposited Hg film reacts with Rh to form intermetallic products with different stabilities, as indicated by at least three mass loss steps. In the first step, between room temperature and 160°C, only the bulk Hg is removed. From this temperature up to about 175°C, the mass loss can be attributed to the desorption of a film of metallic Hg. The last step, from 175 to 240°C, can be ascribed to the removal of Hg from a thin dark film of RhHg2.
Resumo:
Contamination with cadmium compounds poses high potential risk for the health of populations and for this reason the treatment of their toxic effects should urgently be established. The present study was carried out to determine whether α-tocopherol intake can protect tissues against damage induced by cadmium, and to clarify the contribution of superoxide radicals (O 2 -) in this process. Cadmium chloride was tested for tissue damage by a single intraperitoneal injection of Cd 2+ ions (2 mg Kg -1). To determine the potential therapeutic effect of vitamin E, a group of Cd 2+-treated rats received a drinking solution of α-tocopherol (40 mg l -1) for 15 days. Cadmium induced increased serum creatinine and total lactate dehydrogenase, reflecting renal and cardiac damage. The increased lipoperoxide and decreased Cu-Zn superoxide dismutase levels indicated the generation of superoxide radicals in cadmium-treated rats. Tocopherol induced increased serum high-density lipoprotein and depressed the toxic effects of Ca 2+ alone, since creatinine and lactate dehydrogenase determinations were recovered to the control values. Tocopherol decreased lipoperoxide and led the superoxide dismutase activities to approach those of the control values. We concluded that superoxide radicals are produced as mediators of cadmium toxicity. Tocopherol possesses a significant anti-radical activity and inhibits the cadmium effect on superoxide dismutase activity. Tocopherol also protected tissues from the toxic effects of cadmium by a direct antioxidant action which decreased lipoperoxide formation.
Resumo:
A flow-injection system with a Chelite-S® cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl2, in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury, to the flow cell in the forward direction or removes the residue from reactor/gas liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h-1 (50.0 500 ng l-1), consuming about 10 ml sample and 5 mg SnCl2 per determination. The detection limit is 0.8 ng l-1 and the relative standard deviation (RSD) (n = 12) of a 76.7 ng l-1 sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found. (C) 2000 Elsevier Science B.V.
Resumo:
The development of Leucoagaricus gongylophorus, the fungus cultured by the leaf-cutting ant Atta sexdens was inhibited in vitro by synthetic compounds containing the piperonyl group. In addition, worker ants that were fed daily on an artificial diet to which these compounds were added had a higher mortality rate than the controls. The inhibition of the fungal growth increased with the size of the carbon side chain ranging from C1 through C8 and decreasing thereafter. 1-(3,4-Methylenedioxybenzyloxy)octane (compound 5) was the most active compound and inhibited the fungal development by 80% at a concentration of 15 μg m1-1. With worker ants the toxic effects started with compound 5 and increased with the number of carbons in the side chain. Thus, for the same concentration (100 μg m1-1) the mortality rates observed after 8 days of diet ingestion were 82%, 66% and 42%, for 1-(3,4-methylenedioxybenzyloxy)decane, 1-(3,4-methylenedioxybenzyloxy)dodecane and compound 5, respectively, whereas with commercial piperonyl butoxide the mortality was 68%. The latter compound, which is known as a synergist insecticide, was as inhibitory to the symbiotic fungus as the synthetic compound 5. The possibility of controlling these insects in the future using compounds that can target simultaneously both organisms is discussed. © 2001 Society of Chemical Industry.
Resumo:
The present study examines the effects of a hypercaloric diet on hepatic glucose metabolism of young rats, with and without monosodium glutamate (MSG) administration, and the association of these treatments with evaluating markers of oxidative stress. Male weaned Wistar rats (21 days old) from mothers fed with a hypercaloric diet or a normal diet, were divided into four groups (n=6): control (C) fed with control diet; (MSG) treated with MSG (4 mg/g) and control diet; (HD) fed with hypercaloric diet and (MSG-HD) treated with MSG and HD. Rats were sacrificed after the oral glucose tolerance test (OGTT), at 45 days of treatments. Serum was used for insulin determination. Glycogen, hexokinase(HK), glucose-6-phosphatase(G6PH), lipid hydroperoxide, superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px) were determined in liver. HD rats showed hypoglycemia, hyperinsulinemia, and high hepatic glycogen, HK and decreased G6PH. MSG and MSG-HD had hyperinsulinemia, hyperglycemia, decreased HK and increased G6PH in hepatic tissue. These animals had impaired OGTT. HD, MSG and MSG-HD groups had increased lipid hydroperoxide and decreased SOD in hepatic tissue. Hypercaloric diet and monosodium glutamate administration induced alterations in metabolic rate of glucose utilization and decreased antioxidant defenses. Therefore, the hepatic glucose metabolic shifting induced by HD intake and MSG administration were associated with oxidative stress in hepatic tissue.
Resumo:
Background: Previous experiments have shown that a decoction of Bauhinia forficata leaves reduces the changes in carbohydrate and protein metabolism that occur in rats with streptozotocin-induced diabetes. In the present investigation, the serum activities of enzymes known to be reliable toxicity markers were monitored in normal and streptozotocin-diabetic rats to discover whether the use of B. forficata decoction has toxic effects on liver, muscle or pancreas tissue or on renal microcirculation. Methods: An experimental group of normal and streptozotocin-diabetic rats received an aqueous decoction of fresh B. forficata leaves (150 g/L) by mouth for 33 days while a control group of normal and diabetic rats received water for the same length of time. The serum activity of the toxicity markers lactate dehydrogenase, creatine kinase, amylase, angiotensin-converting enzyme and bilirubin were assayed before receiving B. forficata decoction and on day 19 and 33 of treatment. Results: The toxicity markers in normal and diabetic rats were not altered by the diabetes itself nor by treatment with decoction. Whether or not they received B. forficata decoction the normal rats showed a significant increase in serum amylase activity during the experimental period while there was a tendency for the diabetic rats, both treated and untreated with decoction, to have lower serum amylase activities than the normal rats. Conclusions: Administration of an aqueous decoction of B. forficata is a potential treatment for diabetes and does not produce toxic effects measurable with the enzyme markers used in our study. © 2004 Pepato et al; licensee BioMed Central Ltd.
Resumo:
Extracts of different sesame plant (Sesamum indicum, Linnaeus) organs were tested through ingestion and contact experiments to investigate their toxicity to Atta sexdens rubropilosa (Forel) workers. Dichloromethane extracts of seeds were toxic to the leaf-cutting ants and the factor responsible for the toxicity does not show seasonal occurrence.
Resumo:
Extracts of the ripe seeds of the sesame plant (Sesamum indicum, Linnaeus) were tested through contact experiments to investigate their toxicity to Atta sexdens rubropilosa workers. Dichloromethane extract of seeds was toxic to the ants and the factor responsible for this effect was distributed through the ethyl acetate fraction. This fraction was divided into four sub fractions composed of: A) triglycerides, B) monoglycerides + diglycerides + triglycerides, C) diglycerides + sesamoline + sesamine and D) sesamine. However, when these sub fractions were separated, no toxicity was observed. Therefore, in order to determine why the activity was lost, the concentration of each sub fraction was duplicated, and the possible combinations among them were also tested. We concluded that the toxicity to the ants is due mainly to a mixture of triglycerides, and sesamoline or the combination of sesamoline + sesamine can be a synergistic factor in this fraction.
Resumo:
Dimorphandra mollis is a characteristic plant from Brazilian saP vanna-like vegetation. The pollen of this species could be toxic to bees and the objective of the present investigation was to study the toxicity of methanolic extracts obtained from the flowers, peduncles and stem bark of D. mollis to Apis mellifera workers. For the study, the extracts were incorporated into the diet of the bees for later evaluation of mortality rates. The substances isolated: neoisoastilbin, catechin, astilbin and tannins were tested on adult workers and only catechin did not cause toxic effects. The data obtained in the toxicity bioassays were analyzed statistically by Log Rank test and all methanolic extracts showed significant (p<0.0001) toxic effects. Astilbin is also the major component of pollen grains, and is probably responsible for honeybee mortality during blooming periods.
Resumo:
The toxicity of astilbin, isolated from Dimorphandra mollis, was tested in laboratory ingestion bioassays for the leaf-cutting ant Atta sexdens rubropilosa Forel. Worker ants that were fed an artificial diet daily to which astilbin was added had a higher mortality rate than the controls. The substance astilbin was incorporated into the diet with and without the utilization of a solvent. Results for both methodologies utilized were similar and indicate that astilbin reduces the median survival of ants. All concentrations tested showed toxic effects against ant workers, and the statistical comparison of survivorship rates from control and treated groups was significantly different, confirming the insecticidal properties of the substance astilbin.
Resumo:
Crude extracts from roots, stems, branches, fruits and leaves of Cedrela fissilis were tested to verify their toxicity to Atta sexdens rubropilosa workers and to their symbiotic fungus Leucoagaricus gongylophorus. The workers that were fed daily on an artificial diet to which crude extracts from this plant were added had a higher mortality rate than the controls, especially for the hexane, dichloromethane and methanol crude extracts from roots (RH, RD and RM) and from leaves (LH, LD and LM). Fungal growth was inhibited by the hexane (RH) and dichloromethane crude extract from roots (RD). The RH, RD and FD crude extracts were fractioned and their fractions were tested. All the fractions tested presented toxicity to the ants and some fractions (RH-H, RH-D, RD-4 and RD-5) completely inhibited fungus development. The possibility of controlling these insects in the future using Cedrela fissilis compounds that can simultaneously target both organisms is discussed.