135 resultados para Mathematical Cardiovascular Model
Resumo:
Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
Resumo:
Evaluate the effects caused by L-DOPA on cardiovascular and autonomic parameters in an animal model of Parkinsonism induced by 6-hydroxydopamine (6-OHDA).Adult male Wistar rats were subjected to bilateral microinfusion of 6-OHDA or saline (sham group) in the substantia nigra, and treated by gavage with L-DOPA or water for 7days after surgery. On the 6th day the rats were subjected to femoral artery catheterization for cardiovascular recording. Mean arterial pressure (MAP) and heart rate (HR) were evaluated at baseline and during head up tilt (HUT) protocol. Spectral analysis of cardiovascular variability was performed using the V2.4 CardioSeries software v2.4. The lesion was quantified by dopamine levels in the striatum.Dopamine levels in the striatum were decreased in 6-OHDA rats (sham: 4.79±0.49ng/mg; 6-OHDA: 1.99±0.68ng/mg) and were not recovered by Prolopa treatment. Baseline values of MAP and HR were not different between groups. HUT induced an increase in MAP and HR (ΔMAP: 17±1mmHg, ΔHR: 39±4bpm) that were attenuated in 6-OHDA and in Prolopa treated animals. At baseline, the systolic arterial pressure (SAP) variance was lower in the 6-OHDA and sham Prolopa groups. Spontaneous baroreflex sensitivity was higher at baseline in the 6-OHDA group as compared to all studied groups.Our data suggest that treatment with Prolopa did not interfere with cardiovascular variables at baseline. However, during HUT, the 6-OHDA and Prolopa control animals presented a lower cardiovascular compensation, suggesting a possible autonomic impairment in Parkinsonism induced by 6-OHDA.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Experiments of continuous alcoholic fermentation of sugarcane juice with flocculating yeast recycle were conducted in a system of two 0.22-L tower bioreactors in series, operated at a range of dilution rates (D (1) = D (2) = 0.27-0.95 h(-1)), constant recycle ratio (alpha = F (R) /F = 4.0) and a sugar concentration in the feed stream (S (0)) around 150 g/L. The data obtained in these experimental conditions were used to adjust the parameters of a mathematical model previously developed for the single-stage process. This model considers each of the tower bioreactors as a perfectly mixed continuous reactor and the kinetics of cell growth and product formation takes into account the limitation by substrate and the inhibition by ethanol and biomass, as well as the substrate consumption for cellular maintenance. The model predictions agreed satisfactorily with the measurements taken in both stages of the cascade. The major differences with respect to the kinetic parameters previously estimated for a single-stage system were observed for the maximum specific growth rate, for the inhibition constants of cell growth and for the specific rate of substrate consumption for cell maintenance. Mathematical models were validated and used to simulate alternative operating conditions as well as to analyze the performance of the two-stage process against that of the single-stage process.
Resumo:
A new mixed-integer linear programming (MILP) model is proposed to represent the plug-in electric vehicles (PEVs) charging coordination problem in electrical distribution systems. The proposed model defines the optimal charging schedule for each division of the considered period of time that minimizes the total energy costs. Moreover, priority charging criteria is taken into account. The steady-state operation of the electrical distribution system, as well as the PEV batteries charging is mathematically represented; furthermore, constraints related to limits of voltage, current and power generation are included. The proposed mathematical model was applied in an electrical distribution system used in the specialized literature and the results show that the model can be used in the solution of the PEVs charging problem.
Resumo:
The phase diagram of an asymmetric N = 3 Ashkin-Teller model is obtained by a numerical analysis which combines Monte Carlo renormalization group and reweighting techniques. Present results reveal several differences with those obtained by mean-field calculations and a Hamiltonian approach. In particular, we found Ising critical exponents along a line where Goldschmidt has located the Kosterlitz-Thouless multicritical point. On the other hand, we did find nonuniversal exponents along another transition line. Symmetry breaking in this case is very similar to the N = 2 case, since the symmetries associated to only two of the Ising variables are broken. However, for large values of the coupling constant ratio XW = W/K, when the only broken symmetry is of a hidden variable, we detected first-order phase transitions giving evidence supporting the existence of a multicritical point, as suggested by Goldschmidt, but in a different region of the phase diagram. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A novel method to probe the diverse phases for the extended Hubbard model (EHM), including the correlated hopping term, is presented. We extend an effective medium approach [1] to a bipartite lattice, allowing for charge- and/or spin-ordered phases. We calculate the necessary correlation functions to build the EHM phase diagram.
Resumo:
This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.
Resumo:
Usually we observe that Bio-physical systems or Bio-chemical systems are many a time based on nanoscale phenomenon in different host environments, which involve many particles can often not be solved explicitly. Instead a physicist, biologist or a chemist has to rely either on approximate or numerical methods. For a certain type of systems, called integrable in nature, there exist particular mathematical structures and symmetries which facilitate the exact and explicit description. Most integrable systems, we come across are low-dimensional, for instance, a one-dimensional chain of coupled atoms in DNA molecular system with a particular direction or exist as a vector in the environment. This theoretical research paper aims at bringing one of the pioneering ‘Reaction-Diffusion’ aspects of the DNA-plasma material system based on an integrable lattice model approach utilizing quantized functional algebras, to disseminate the new developments, initiate novel computational and design paradigms.
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
This study was designed to present the feasibility of an in vivo image-guided percutaneous cryoablation of the porcine vertebral body. Methods The institutional animal care committee approved this study. Cone-beam computed tomography (CBCT)-guided vertebral cryoablations (n = 22) were performed in eight pigs with short, 2-min, single or double-freezing protocols. Protective measures to nerves included dioxide carbon (CO2) epidural injections and spinal canal temperature monitoring. Clinical, radiological, and pathological data with light (n = 20) or transmission electron (n = 2) microscopic analyses were evaluated after 6 days of clinical follow-up and euthanasia. Results CBCT/fluoroscopic-guided transpedicular vertebral body cryoprobe positioning and CO2 epidural injection were successful in all procedures. No major complications were observed in seven animals (87.5 %, n = 8). A minor complication was observed in one pig (12.5 %, n = 1). Logistic regression model analysis showed the cryoprobe-spinal canal (Cp-Sc) distance as the most efficient parameter to categorize spinal canal temperatures lower than 19 °C (p<0.004), with a significant Pearson’s correlation test (p < 0.041) between the Cp-Sc distance and the lowest spinal canal temperatures. Ablation zones encompassed pedicles and the posterior wall of the vertebral bodies with an inflammatory rim, although no inflammatory infiltrate was depicted in the surrounding neural structures at light microscopy. Ultrastructural analyses evidenced myelin sheath disruption in some large nerve fibers, although neurological deficits were not observed. Conclusions CBCT-guided vertebral cryoablation of the porcine spine is feasible under a combination of a short freezing protocol and protective measures to the surrounding nerves. Ultrastructural analyses may be helpful assess the early modifications of the nerve fibers.