174 resultados para LIGNIN DEGRADATION
Resumo:
In this study, nanocomposites of PLA and organoclays Cloisite 20A and Cloisite 30B were prepared by the melt intercalation method and the obtained samples were characterized by transmission electron microscopy (TEM). Since composting is an important proposal to the final disposal of biopolymers, the influence of clays on the hydrolytic degradation process of PLA was evaluated by visual analysis and monitoring of molecular weight after periods of 15 and 30 days of degradation in compost. After degradation of the materials in composting environment, the evaluation of cytotoxic, genotoxic and mutagenic effects of compost aqueous extract was carried out using a bioassay with Allium cepa as test organism. The TEM micrographs permitted the observation of different levels of dispersion, including exfoliated regions. In the evaluation of hydrolytic degradation it was noted that the presence of organoclays can decrease the rate of degradation possibly due to the barrier effect of clay layers and/or the higher degree of crystallinity in the nanocomposite samples. Nevertheless, even in the case of nanocomposites, the molecular weight reduction was significant, indicating that the composting process is favorable to the chain scission of PLA in studied materials. In the analysis performed by the bioassay using A. cepa as test organism, it was found that after degradation of the PLA and its nanocomposites the aqueous extract of compost samples induced a decreasing in the mitotic index and an increasing in the induction of chromosomal abnormalities. These results were statistically significant in relation to the negative control (distilled water). By comparing the results obtained for the nanocomposites in relative to pure polymer, there were no statistically significant differences. The types of the observed chromosomal aberrations indicated a possible genotoxic effect of the materials, which may be related to an aneugenic action of PLA degradation products. © 2013 Springer Science+Business Media New York.
Resumo:
A comparative study using different mass proportions of WO3/C (1%, 5%, 10% and 15%) for H2O2 electrogeneration and subsequent phenol degradation was performed. To include the influence of the carbon substrate and the preparation methods, all synthesis parameters were evaluated. The WO3/C materials were prepared by a modified polymeric precursor method (PPM) and the sol-gel method (SGM) on Vulcan XC 72R and Printex L6 carbon supports, verifying the most efficient metal/carbon proportion. The materials were physically characterized by X-ray diffraction (XRD) and by X-ray photoelectron spectroscopy (XPS) techniques. The XRD and the XPS techniques identified just one phase containing WO3 and elevated oxygen concentration on carbon with the presence of WO3. The oxygen reduction reaction (ORR), studied by the rotating ring-disk electrode technique, showed that WO3/C material with the lowest tungsten content (1% WO3/C), supported on Vulcan XC 72R and prepared by SGM, was the most promising electrocatalyst for H2O2 electrogeneration. This material was then analyzed using a gas diffusion electrode (GDE) and 585mgL-1 of H2O2 was produced in acid media. This GDE was employed as a working electrode in an electrochemical cell to promote phenol degradation by an advanced oxidative process. The most efficient method applied was the photo-electro-Fenton; this method allowed for 65% degradation and 11% mineralization of phenol during a 2-h period. Following 12h of exhaustive electrolysis using the photo-electro-Fenton method, the total degradation of phenol was observed after 4h and the mineralization of phenol approached 75% after 12h. © 2013 Elsevier B.V.
Resumo:
Thermal-oxidative degradation behaviours of raw natural rubber (NR) have been investigated by using thermogravimetry analysis in inert and oxidative atmospheres and the plasticity retention index (PRI). The activation energy E a, was calculated using Horowitz-Metzger and Coats-Redfern methods and compared with PRI. The E a values obtained by each method were in good agreement with each other. The June samples are the least stable rubbers among the studied ones, whereas February samples exhibited the highest values of activation energy, therefore in agreement with the PRI behaviour, which indicates that the thermo-oxidative stability of the June samples are the poorest during the thermo-oxidative degradation reaction. Natural rubber is a product of biological origin, and thus these variations in the values of thermal behaviour and PRI might be related to the genetic differences and alterations of climatic conditions that act directly on the synthesis of non-rubber constituents, which are generally reflected in latex and rubber properties. © 2013 Institute of Materials, Minerals and Mining.
Resumo:
An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.
Resumo:
The recalcitrance in grasses varies according to cell type and maturation. The origin of the recalcitrance in different regions from sugar cane internodes with varied lignin contents was evaluated. The efficiency of enzymatic hydrolysis was correlated with the chemical, micromorphological and microspectrophotometric characteristics of the samples. The internodes of three sugar cane hybrids were dissected into four different fractions. The outermost fraction and the rind were the most recalcitrant regions, whereas the pith-rind interface and the pith were less recalcitrant. Cellulose conversion reached 86% after 72h of enzymatic digestion of the pith from the hybrid with the lowest lignin content. There was an inversely proportional correlation between the area occupied by vascular bundles and the efficiency of cellulose hydrolysis. High cellulose and low lignin or hemicellulose contents enhanced the efficiency of enzymatic hydrolysis of the polysaccharides. The critical evaluation of the results permitted to propose an empirical parameter for predicting cellulose conversion levels that accounts for the positive effect of high cellulose and low lignin plus hemicellulose and the detrimental effect of abundant vascular bundles. The cellulose conversion levels fit well to this calculated parameter, following a second order polynomial with an r2 value of 0.96. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Microbiologia - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to determine the no-observable-adverse-effect concentration (NOAEC) for trichlorfon, an antiparasitic agent used in aquaculture, in Piractus mesopotamicus (pacu) using acetylcholinesterase (AChE) activity as an end point. Fish were exposed 24 h/d for 15 d to different concentrations of trichlorfon in tanks of water for which a curve of dissipation was previously determined. Analysis of trichlorfon in water and fish plasma using gas chromatography with electron capture detection (GC-ECD) enabled measurement of limit of detection (LOD) and limit of quantification (LOQ), respectively, to be 3 and 10 ppb. Thirty-six hours after trichlorfon dilution in water, the concentration was below the LOD, and data showed that plasma concentrations did not exceed the LOQ. Apart from the 6.25 g/L, all concentrations of trichlorfon significantly inhibited plasma and brain AChE activity compared to controls. The AChE activity levels returned to control values in 7 d. These data may be useful to determine the concentration of trichlorfon that destroys parasites without producing adverse effects in fish.
Resumo:
The objective of this study was to evaluate the behaviour of fibre in the digestive tract on the basis of the passage kinetics of forage and concentrate particles in cows fed different omega-6 fatty-acid sources. The scientific hypothesis of this study was that omega-6 fatty acids do not interfere with the digestion of fibre in the diets of dairy cows. Five primiparous lactating Holstein cows were used in the experiment. The experimental diets were: control (C), ground soyabean (GS), cottonseed (CS), soyabean oil (SO), calcium salts of fatty acids (CSFA). The global mean estimates for the parameters of passage rate (gamma) were 0.038 and 0.055 h(-1) for forage and concentrate, respectively. The only significant effect with respect to the passage rate was a high negative correlation between the concentrate passage rate and dry matter intake. There was less undegradable neutral detergent fibre (NDF) in treatments without added lipid. Dietary supplementation with lipid sources does not alter the kinetic parameters of roughage and concentrate particle passage or in vitro NDF degradation. Sources of omega-6 fatty acids do not alter the rumen degradation and transit of fibre.
Resumo:
The effect of different beverages on acrylic resin denture teeth color degradation is evaluated. Ten acrylic resin denture teeth brands were evaluated: Art Plus (AP), Biolux (BX), Biotone IPN (BI), Magister (MG), Mondial 6 (MD), Premium 6 (PR), SR Vivodent PE (SR), Trilux (TR), Trubyte Biotone (TB), and Vipi Dent Plus (VP). Teeth were immersed in staining solutions (coffee, cola, and orange juice) or artificial saliva (control) (n = 6) for 1, 7, 15, or 30 days. Specimen colors were evaluated spectrophotometrically based on the Commission Internationale d'Eclairage L*a*b* system. Color differences (Delta E) were calculated between the baseline and post-staining results. Data were evaluated by analysis of variance and Tukey test (alpha = 0.05). BI (1.82 +/- 0.95) and TR (1.78 +/- 0.72) teeth exhibited the greatest Delta E values, while BX (0.88 +/- 0.43) and MD (1.09 +/- 0.44) teeth were the lowest, regardless of solution and measurement period, and were different from BI and TR teeth (P < 0.05). Cola and coffee promoted higher denture teeth color alterations than orange juice and saliva (P < 0.05). Saliva generated the lowest denture teeth color alterations. Greater immersion times caused higher denture teeth color changes. The lifespan of removable dentures and the aesthetic satisfaction of several edentulous patients may be increased with the use of stain-resistant artificial denture teeth. (C) The Authors.