141 resultados para InPouchTMTF – Feline
Resumo:
Feline hepatic lipidosis or fatty liver disease is a cholestatic syndrome that affects domestic cats and is characterized by excess fat accumulation in the liver of cats. Symptoms commonly seen with this syndrome are anorexia, weight loss, lethargy, vomiting, jaundice, and occasionally behavioral or neurologic signs such as excessive drooling, blindness, coma, and seizures. The diagnosis is based on the patient history, clinical examination, complementary examination, and the definitive diagnosis is obtained by cytology and/or histopathology of hepatic tissue. In serum biochemistry, the main findings include increased serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate amino transferase (AST) and bilirubin. The gamma glutamyl transferase (GGT) is normal or slightly increased. The cornerstone of therapy is aggressive feeding to supply the cat full caloric requirements. Without aggressive nutritional support and intensive monitoring the fatty liver disease can be fatal
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Polycystic kidney disease (PKD) is a hereditary autosomal dominant disorder that mainly affects Persian cats; it is an important cause of chronic kidney disease in this species. Hypertrophic cardiomyopathy (HCM) is the most common heart disease in cats, and there is evidence of a genetic origin in some breeds. Although neither of these disorders is rare in cats, according to our literature review, this is the first report of the concomitant occurrence of PKD and HCM in Persian cats in Brazil.
Resumo:
Studies on the occurrence of Cryptosporidium spp. in cats are still scarce. In this literature review, we address epidemiological and clinical aspects, as well as diagnostic methods, therapeutic behavoiur, and control and prevention measures for this disease in cats, with the aim of investigating if cryptosporidiosis is an underestimated disease in the laboratory routine and in small animal medical clinics.
Resumo:
The objective of this study was to investigate whether increased dietary water content and feeding frequency increased voluntary physical activity of young, lean adult female cats. A replicated 4 x 4 Latin square design with a 2 x 2 factorial treatment arrangement (feeding frequency and water content) was used. The 4 treatments consisted of 1 meal daily dry pet food without added water (1D; 12% moisture as is), 1 meal daily dry pet food with added water (1W; 70% total water content), 4 meals daily dry pet food without added water (4D; 12% moisture as is), and 4 meals daily dry pet food with added water (4W; 70% total water content). Eight healthy adult, lean, intact, young, female domestic shorthair cats were used in this experiment. Voluntary physical activity was evaluated using Actical activity monitors placed on collars and worn around the cats'necks for the last 7 d of each experimental period of 14 d. Food anticipatory activity (FAA) was calculated based on 2 h prior to feeding periods and expressed as a percentage of total daily voluntary physical activity. Increased feeding frequency (4 vs. 1 meal daily) resulted in greater average daily activity (P = 0.0147), activity during the light period (P = 0.0023), and light: dark activity ratio (P = 0.0002). In contrast, physical activity during the dark period was not altered by feeding frequency (P > 0.05). Cats fed 4 meals daily had increased afternoon FAA (P = 0.0029) compared with cats fed once daily. Dietary water content did not affect any measure of voluntary physical activity. Increased feeding frequency is an effective strategy to increase the voluntary physical activity of cats. Thus, it may assist in the prevention and management of obesity.
Resumo:
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that induces glucose-dependent stimulation of insulin secretion while suppressing glucagon secretion. Glucagon-like peptide-1 also increases beta cell mass and satiation while decelerating gastric emptying. Liraglutide is a fatty-acid derivative of GLP-1 with a protracted pharmacokinetic profile that is used in people for treatment of type II diabetes mellitus and obesity. The aim of this study was to determine the pharmacokinetics and pharmacodynamics of liraglutide in healthy cats. Hyperglycemic clamps were performed on days 0 (HGC) and 14 (LgHGC) in 7 healthy cats. Liraglutide was administered subcutaneously (0.6 mg/cat) once daily on days 8 through 14. Compared with the HGC (mean +/- standard deviation; 455.5 +/- 115.8 ng/L), insulin concentrations during LgHGC were increased (760.8 +/- 350.7 ng/L; P = 0.0022), glucagon concentrations decreased (0.66 +/- 0.4 pmol/L during HGC vs 0.5 +/- 0.4 pmol/L during LgHGC; P = 0.0089), and there was a trend toward an increased total glucose infused (median [range] = 1.61 (1.11-2.54) g/kg and 2.25 (1.64-3.10) g/kg, respectively; P = 0.087). Appetite reduction and decreased body weight (9% +/- 3%; P = 0.006) were observed in all cats. Liraglutide has similar effects and pharmacokinetics profile in cats to those reported in people. With a half-life of approximately 12 h, once daily dosing might be feasible; however, significant effects on appetite and weight loss may necessitate dosage or dosing frequency reductions. Further investigation of liraglutide in diabetic cats and overweight cats is warranted. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Exenatide extended-release (ER) is a microencapsulated formulation of the glucagon-like peptide 1-receptor agonist exenatide: It has a protracted pharmacokinetic profile that allows a once-weekly injection with comparable efficacy to insulin with an improved safety profile in type II diabetic people. Here, we studied the pharmacology of exenatide ER in 6 healthy cats. A single subcutaneous injection of exenatide ER (0.13 mg/kg) was administered on day 0. Exenatide concentrations were measured for 12 wk. A hyperglycemic clamp (target = 225 mg/dL) was performed on days 7 (clamp I) and 21 (clamp II) with measurements of insulin and glucagon concentrations. Glucose tolerance was defined as the amount of glucose required to maintain hyperglycemia during the clamp. Continuous glucose monitoring was performed on weeks 0, 2, and 6 after injection. Plasma concentrations of exenatide peaked at 1 h and 4 wk after injection. Comparing clamp I with clamp II, fasting blood glucose decreased (mean standard deviation = 11 8 mg/dL, P = 0.02), glucose tolerance improved (median [range] +33% 14%-138%], P = 0.04), insulin concentrations increased (+36.5% [-9.9% to 274.1%], P = 0.02), and glucagon concentrations decreased (-4.7% [0%-12.1%], P = 0.005). Compared with preinjection values on continuous glucose monitoring, glucose concentrations decreased and the frequency of readings <50 mg/dL increased at 2 and 6 wk after injection of exenatide ER. This did not correspond to clinical hypoglycemia. No other side effects were observed throughout the study. Exenatide ER was safe and effective in improving glucose tolerance 3 wk after a single injection. Further evaluation is needed to determine its safety, efficacy, and duration of action in diabetic cats. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Obesity is a risk factor in the development of several respiratory diseases. Lung volumes tend to be decreased, especially expiratory reserve volume, increasing expiratory flow limitation during tidal breathing. Barometric whole-body plethysmography is a non-invasive pulmonary function test that allows a dynamic study of breathing patterns. The objective of this study was to compare pulmonary function variables between obese and non-obese cats through the use of barometric whole-body plethysmography. Nine normal-weight and six obese cats were placed in the plethysmograph chamber, and different respiratory variables were measured. There was a significant decrease in tidal volume per kilogram (P=0.003), minute volume per kilogram (P=0.001) and peak inspiratory and expiratory flows per kilogram (P=0.001) in obese cats compared with non-obese cats. Obesity failed to demonstrate a significant increase in bronchoconstriction index variable enhanced pause (Penh), as previously reported in humans and dogs. The results show that feline obesity impairs pulmonary function in cats, although a significant increase in bronchoconstriction indexes was not observed. Non-invasive barometric whole-body plethysmography can help characterise mechanical dysfunction of the airways in obese cats.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The digestive tract of ferrets is anatomically simple, with no caecum, ileocolic valve or external differentiation between the transition of ileum and colon. The species has a short large intestine that provides minor contributions to the digestive process. Aiming to better understand the digestibility efficiency of ferrets, the present study compared the digestibility of extruded diets with different amounts of macronutrients fed to dogs, cats and ferrets. Three formulations for cat maintenance were used (values in % of DM basis): high carbohydrate (HC; nitrogen-free extract (NFE) = 54 %, protein = 31 % and fat = 8 %); moderate carbohydrate (MC; NFE = 37 %, protein = 41 % and fat = 10 %); and low carbohydrate (LC; NFE = 19 %, protein = 46 % and fat = 23 %). Apparent total tract macronutrient digestibility was determined by the method of total collection of faeces. Results were compared by ANOVA, considering the diet and species effects and their interactions. Means were compared by the Tukey's test (P < 0·05). Dogs and cats presented similar food intakes, but ferrets consumed almost two times more food (g/kg body weight). Species × diet interactions were verified for apparent total tract digestibility (ATTD; P < 0·05). Ferrets presented lower DM digestibility than dogs and cats for all three diets (P < 0·05), lower NFE digestibility than dogs for the three diets and lower NFE digestibility than cats for the HC and LC diets (P < 0·05). For crude protein (CP), ferrets presented lower ATTD than dogs and cats (P < 0·05), whereas for fat, dogs and ferrets presented similar ATTD, and higher values than those presented by cats (P < 0·05). Kibble diets had a lower DM, CP and NFE digestibility when fed to ferrets compared with dogs and cats. Fat digestibility was similar between dogs and ferrets and higher than that for cats.
Resumo:
Hair ingested by licking during cat grooming can eventually coalesce into solid masses in cat gastrointestinal tract. It is believed that dietary fibre might reduce formation of these trichobezoars (hairballs). The effects of two insoluble fibre sources added to kibble diets were evaluated with respect to trichobezoar faecal excretion. Thirty-two cats and four diets were used in a randomised block design: a control diet without additional fibre, 10 % added sugarcane fibre, 20 % added sugarcane fibre or 10 % added cellulose. Animals were fed for 42 d and during three separate periods (days 15-17, 25-27 and 40-42), the cats were housed individually in metabolic cages and their faeces were totally collected. The faeces were evaluated and the trichobezoars were isolated and classified into small (<1 cm), medium (1·1-2 cm) or large (>2·1 cm). Means were evaluated by repeated measures ANOVA and contrasts (P < 0·05). Cats fed sugarcane fibre shown a linear reduction of small and medium trichobezoar excretion (number per cat per day; P = 0·004) as well as a reduction in trichobezoar mass excretion (mg per cat per day; P < 0·01). The control group showed increased faecal excretion of large trichobezoars (P = 0·003), which were not present in the high sugarcane fibre group (P < 0·006). No effect of cellulose was observed for any evaluated trait. Therefore, long fibres (sugarcane fibre) may cause greater peristaltic stimulation, increasing the propulsion of hair through the gut, but further research is needed to validate this mechanism. In conclusion, sugarcane fibre reduced faecal hairball elimination in cats, which may have clinical applications for the prevention of health problems related to trichobezoars.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
To evaluate the effectiveness of epidural lidocaine in combination with either methadone or morphine for postoperative analgesia in cats undergoing ovariohysterectomy. Under general anesthesia, 24 cats that underwent ovariohysterectomy were randomly allocated into three treatments groups of eight each. Treatment 1 included 2% lidocaine (4.0 mg/kg); treatment 2 included lidocaine and methadone (4.0 mg/kg and 0.3 mg/kg, respectively); and treatment 3 included lidocaine and morphine (4.0 mg/kg and 0.1 mg/kg, respectively). All drugs were injected in a total volume of 0.25 ml/kg via the lumbosacral route in all cats. During the anesthetic and surgical periods, the physiological variables (respiratory and heart rate, arterial blood pressure and rectal temperature) were measured at intervals of time zero, 10 mins, 20 mins, 30 mins, 60 mins and 120 mins. After cats had recovered from anesthesia, a multidimensional composite pain scale was used to assess postoperative analgesia at 2, 4, 8, 12, 18, and 24 h after epidural. The time to first rescue analgesic was significantly (P <0.05) prolonged in cats that received both lidocaine and methadone or lidocaine and morphine treatments compared with those that received the lidocaine treatment. All cats that received lidocaine treatment alone required rescue analgesic within 2 h of epidural injections. All treatments had significant cardiovascular and respiratory changes but they were within acceptable range for healthy animals during the surgical period. The two combinations administered via epidural allowed ovariohysterectomy with sufficient analgesia in cats, and both induced prolonged postoperative analgesia.