248 resultados para Hypothalamic Paraventricular Nucleus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress induced a decrease in the reactivity of the aorta to noradrenaline (NA), as a consequence of an endothelial nitric oxide (NO) system hyperactivity. The main characteristic of the stress response is activation of the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic adrenomedullary (SA) system. The participation of the HPA axis and SA system in the decreased reactivity to NA in the aorta of rats exposed to 4-h immobilization was investigated. Concentration-response relationships for NA were obtained in the aorta, with and without endothelium, isolated from normal and stressed rats, following these procedures: (1) in the absence and presence of L-NAME; (2) after adrenalectomy (ADX) or not, in the absence or presence of L-NAME; (3) ADX rats treated or not with corticosterone; (4) ADX associated with stress; and (5) treated or not with reserpine. The reactivity of aorta without endothelium was unaffected by the procedures. The reactivity of aorta with endothelium was decreased by either stress or ADX. This effect was reversed by both L-NAME and corticosterone. ADX did not potentiate the decrease in the aorta reactivity induced by stress. Reserpine did not change the reactivity of aorta with endothelium from normal rats, but prevented the decrease in reactivity induced by stress. It is concluded that the HPA axis participates in endothelium-dependent modulation of aorta reactivity in normal conditions and that thr SA system participates in hyperactivity of the endothelial NO-system induced by stress, which is responsible for the decreased aorta reactivity to NA. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of L-NAME, a nitric oxide (NO) inhibitor and sodium nitroprusside (SNP), an NO-donating agent, on pilocarpine-induced alterations in salivary flow, mean arterial blood pressure (MAP) and heart rate (HR) in rats. Male Holtzman rats (250-300 g) were implanted with a stainless steel cannula directly into the median preoptic nucleus (MnPO). Pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO induced an increase in salivary secretion (P<0.01). Pilocarpine (1, 2, 4, 8, 16 mg/kg) ip also increased salivary secretion (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine (10, 20, 40, 80, 160 µg) injected into the MnPO or ip (1, 2, 4, 8, 16 mg/kg) increased salivary secretion (P<0.01). SNP (30 µg) injected into the MnPO or ip prior to pilocarpine attenuated salivary secretion (P<0.01). Pilocarpine (40 µg) injection into the MnPO increased MAP and decreased HR (P<0.01). Pilocarpine (4 mg/kg body weight) ip produced a decrease in MAP and an increase in HR (P<0.01). Injection of L-NAME (40 µg) into the MnPO prior to pilocarpine potentiated the increase in MAP and reduced HR (P<0.01). SNP (30 µg) injected into the MnPO prior to pilocarpine attenuated (100%) the effect of pilocarpine on MAP, with no effect on HR. Administration of L-NAME (40 µg) into the MnPO potentiated the effect of pilocarpine injected ip. SNP (30 µg) injected into the MnPO attenuated the effect of ip pilocarpine on MAP and HR. The present study suggests that in the rat MnPO 1) NO is important for the effects of pilocarpine on salivary flow, and 2) pilocarpine interferes with blood pressure and HR (side effects of pilocarpine), that is attenuated by NO.